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Abstract
)As software system requirements become more complex, software engineers must
carefully design the systems to ensure the systems adequately meet all the requirements,
both functional and non-functional. Because real-time systems have timing constraints,
in addition to the more traditional behavioral constraints, a comprehensive software de-
sign analysis model is required which incorporates performance, timing, and behavioral
constraints. Although the Ada language tasking constructs are compiler independent, Ada
tasking is dependent on its runtime environment; therefore, a formal model of Ada tasking
and its associated runtime environment is important in order for system designers to make
realistic decisions when m__c;%?lé_ylgission Critical Computer Resources (MCCR) systems.
The main focus of thisTesEarcireffort-is to determine the feasibility of developing a pa-
rameterized, formal model of Ada tasking and the associated runtime environment. This
research shows that such a parameterized model can be developed using a mathematical
model which incorporates real-time scheduling and queueing theory. This model can be
used in the future to develop a design analysis environment for real-time embedded soft-
ware systems that require Ada as the target language. Thus, given a specification for such

a system, the design analysis environment can be used to obtain the information necded

to support Ada software design decisions. ] L @/) <
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FEASIBILITY ANALYSIS OF DEVELOPING
A FORMAL PERFORMANCE MODEL
OF Ada TASKING

I. Introduction

1.1 Background

The Department of Defense (DoD) sponsored the development of Ada in order to
combat increasing software complexity, especially in embedded, real-time computer sys-
tems. Embedded applications tend to be large, long-lived, subject to continuous change,
subject to hardware constraints, and are required to be highly reliable and fault tolerant
(3:15). The DoD has recently mandated Ada as the “single, common, compuier pro-
gramming language for Defense computer resources used in intelligence systems, for the
command and control of military forces, or as an integral part of a weapon system” (7:2).
These systems are typically large, embedded computer systems which have rcal-time pro-

cessing constraints.

Real-time systems are divided into two groups: hard real-time systems and soft
rcal-time systems. “In soft real-time systems, tasks are performed by the system as fast
as possible, but they are not constrained to finish by specific times. On the other hand. in
hard real-time systems, tasks have to be performed not only correctly, but also in a timely

fashion. Otherwise, there might be severe consequences” (24:151).

“Hard real-time systems are defined as those systems in which correctness of the sys-
tem depends not only on the logical result of computation, but also on the time at which
the results are produced” (24:1). Because real-time systems have timing constraints, in
addition to the more traditional behavioral constraints, a comprehensive software design
analysis model is required which incorporates performance, timing, and behavioral con-

straints.

“Embedded computer systems are usually defined to be those computer systems that

constitute a part of a larger system whose primary function is other than computational.
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"The primary fgncﬁ@n of the computers are to monitor and- control devices” (2:3). In addi-
‘tion, Embédded Computér-Systems (ECS5) generally have real=time processing constraints
which require concurrent computation. Examples of ECS in the DoD are large systems,
such as, the flight control computers for the F-15, F-=16, and F-111. These systems must

‘be reliable,-fault tolerant, and easy to modify over their long life span (3:15).

1.2 Statement of the Problem

The biggest problem with existing models of concurrent/parallel computation, such
as Communicating.Sequential Processes (CSP) and Petri- Nets, is that they concentrate
on modeling a system’s behavior and tend to ignore, or abstract away, performance and

timing issues.

It is ,impgi'tant},to specify timing requirements in the system specification for both
the software and -hardware. In the past, the system specification was mainly concerned
with describing aspects of hardware architecture (e.g., speed and memory capacity): the

software timing and speed were simply a function of the hardware and the programmer's

cieativity. Due to the; stringent timing requirements of real-time systems, it is imperative

that the system specification include both hardware and software constraints. Performance
and timing-requirements-are critical issues for real-time-systems and must be included in
the system specification to-determine how -the specified Ada runtime environment (RTE)

impacts-a given design-and implementation.

In order to adequately model a Mission Critical Computer Resources (MCCR) sys-
tem, both perform'a.ncé and behavior must-be described by a.comprehensive formal.model.
Such a model of Ada tasking, and its associated RTE, is important in order for system
designers to make realistic decisions when modeling MCCR systems. Although the Ada
language tasking constructs.are compiler independent, actual Ada tasking behavior is de-
pendent on its RTE. It is, therefore, important for the systems and software engincers
to be aware of how the RTE behaves in order to properly design these complex MCCR
systems. The need for a.formal model of Ada tasking and its associated RTE is increasing

as-Ada’s-usage increases-in concurrent/parallel computing systems.
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Bécause each RTE is different, an Ada tasking modél needs to be parameterized to
Ai'eﬁect the ﬁndérlying RTE. Thus, the model will also be useful in détermining which RTE
* “best suits the needs of a particular embédded computer system. Alternately, since the
‘j selection of the RTE is-often determined by computer system engineers, the mode! may
be used by software engineers to point out potential problems with the existing RTE and

the proposed software design.

The primary goal of this résearch effort is to analyze and develop a parameterized,
formal model of Ada tasking and the associated RTE that incorporates the performance
aspect. This goal is based upon the hypothesis that such a formal model can be developed

" which combines graphical and mathematical notations.

1;3 Summary of Current Knowledge

Although Ada has been mandated for embedded systems (7:2), there is doubt among
members of the software engineering community as to whether Ada is capable of providing
adequate support for real-time embedded computer systems (14:494-193). Nevertheless,
Ada contains the tasking facilities and low-level I/O necessary for implementing real-time

.émbedded computer systems. However, the diversity of the scheduling algorithms in each
RTE causes each environment to be different and, until a standard RTE exists. soltware
engineers must search for the environment that is appropriate for their application or create

i design that is-appropriate for the environment:

Concurrent programming is important for real-time systems because it is possible for
events to arrive that must be handled simultaneously. Although most current programnming
languages only allow sequential execution, the Ada tasking facility allows programs to
‘execute concurrently. “Tasking is an important aspect of many embedded systems ...
However, tasking seems to have been neglected in most languages in production use for
such systems” (15:269). The concurrent execution of tasks also makes programs more

difficult to write and causes the RTE to be more difficult to implement.

1.3.1 Ada Tasking. “A task is the scheduling entity in a system™ (24:153). The

Ada Language Reference Manual (LRM) defines Ada tasks as “entities whose exccutions

1-3




:proceed in parallel” (8:9-1). Althcugh tasks are able to operate concurrently, there is
no requirement that they must execute at the same time. A uniprocessor system may
‘only have one process (or task) executing at any given time; the processes take turns
executing and, although o'nly one task is actually executing at a time, they are all said to

be “logically” executing,.

Ada tasks operate independently except when they need to synchronize with another
task at which time they are said to “rendezvous” (8:9-1) (15:306). One task calls another
task by issuing an entry call and when the called task accepts this call, the two tasks are
in a rendezvous and may then exchange data. After completing the rendezvous, the tasks

again execute independently and asynchronously.

It is possible for several tasks to call another task at the same time. When this
occurs, the calling tasks are placed into an entry queue and the called task will rendezvous
with the calling tasks in the queue according to a First-Come-First-Served schednling

algorithm (8:9-9) (15:276).

1.3.2 Ada Runtime Environments. When the first programs were written for
mainframe computers, software developers created code segments for the bare computer
hardware. As time went on, the software engineers agreed on basic conventions in order
that their code might work together. They also built subroutines which could be reused
from application to application, thus, greatly simplifying programming. These conventions
and subroutines allowed the software engineer to abstract one level away from the bare

machine and became a basic RTE.

At this point, however, the bare machine was still accessible to the programmer
whose code would interface with both the RTE and the bare machine. This allowed each
programmer to create his own abstraction of the computer. As time went on, the basic
subroutines of the RTE were refined and improved with the machine-dependent features
becoming the operating system and the language-dependent features being handled by the

compiler,

The RTE allows the programmer to abstract away low-level implementation details

which are unique to each machine. The convenience of using the RTE offsets the slight
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ﬁec‘re‘ase in performance due to the overhead of the RTE. Each RTE is developed for a
:_:sipé‘giﬁc machine; therefore, an application tailored for one machine may perform much

_ diffetently on-another machine; this is due entirely to its RTE (1:11).

Ada is defined in the LRM and any Ada RTE must comply with the requirements

" therein. However, the LRM allows great flexibility in how the RTE will support Ada and

since there is currently no standard Ada RTE, there can be many interpretations and
differing Ada RTEs (1:14).

] 1.3.3 Scheduling Algorithms. A scheduler decides the order of execution for
~ tasks on a central processing unit (CPU), entry queue, or input/output processor (IOP).

The CPU and entry schédulers are important within Ada task scheduling. Tasks may

L 7 be periodic or aperiodic, independent or synchronous. Periodic tasks repeat after a fixed
] o interval of time, whereas, aperiodic tasks occur only once, or at random intervals. Periodic

) tasks have a specified repetition rate called the frequency or request rate. There are varying
. 2 ] A degrees of synchronous tasks; synchronous tasks may be totally dependent on other tasks
' or they may only need to exchange data occasionally. As mentioned previonsly., Ada
tasks exchange data by synchronizing in a rendezvous. Independent tasks do not nced to

exchange information with other tasks and, therefore, do not rendezvous with other tasks.

- ) Deadlock, starvation, and task set performance are important issues for scheduling
: algorithms. Starvation occurs when a task or group of tasks is not allowed to execute.
Performance is a measurement of throughput and turnaround time, Throughput measures

how many tasks complete in a given time period. Turnaround time measures how long a

- ] : j particular task takes to complete. Each scheduling algorithm has different performance;
: o some algorithms that allow starvation may actually have better average performance than

algorithms that do not allow starvation (23:Ch 4).

: - . . Somie examples of possible scheduling algorithms are: First-Come-~First-Serve (FCFS),
7 Shortest-Job~First (SJF), Round Robin (RR), and Rate Monotonic (RM), and each of

these are summarized below,




1.3.3.1 First=Come-First-Serve (FCFS). The FCFS scheduling algo-
rithm is the easiest to implement. New tasks are placed at the tail of the ready queue and
are allocated from the head of the queue. In FCFS, all tasks are of equal priority which
causes performance to be poor because the average waiting time is not minimized (18:106).

The benefit of FCFS is that it will not allow starvation.

1.3.3.2 Shortest Job First (SJF). The SJF scheduling algorithm allocates
‘the task with the smallest estimated execution time or “burst.” If two tasks have the same
burst time, then FCFS scheduling is used. There is no way of knowing what the actual
length of the next burst will be without future knowledge; therefore, the next burst will
be estimated upon its past performance. SJF gives the minimum average waiting time for
‘a set of tasks since it chooses a short task before a long task. This will decrease the short
task’s wait time more than it will increase the long task’s wait time. Thus, SJF gives a
lower average waiting time. A problem with this method is that tasks with large bursts
may starve since the algorithm constantly chooses the task with the shorter burst times
(23:180).
Additionally, the SJF algorithm can be preemptive or non-precmptive. A preemptive
SJF allows the task currently running to be interrupted when a new task arrives in the
queue which has a smaller burst time. A non-preemptive SJF allows the task running on

the processor to execute until it completes.

1.3.3.3 Round Robin (RR). The RR scheduling algorithm is similar to
FCFS except that it preempts an executing task after allowing it to run for a specified
time or quantum. It then places the task at the end of the ready queue. This algorithm
is often used on uniprocessor systems in order to give the illusion that all the tasks are
operating concurrently. The RR algorithm does not allow starvation. If the time quantum

is too large, the RR algorithm behaves like the FCF'S algorithm mentioned above.

1.3.3.4 Rate Monotonic (RM). The RM scheduling algorithm, used for a
set of independent periodic tasks, selects tasks based upon their period. Tasks with shorter

périods are scheduled before tasks with longer periods. “A major advantage of using the




~ tate monotonic algorithm is that it allows us to separate logical corréctness from timing

correctness concerns” .(22:7).

1.3.4 Ada RTE Schedulers. s real-time scheduler assigns an ordering (sched-
ule) to a set of tasks in order to meet timing, precedence, or resource requirements of
real-time systems. An Ada RTE requires two schedulers: one to schedule the tasks to run
on the processors; and one to schedule the synchronization points for each entry queue.

These algorithms need not be the same.

Processor scheduling can use any scheduling discipline; however, certain algorithms

will be more efficient for specific applications. Most Ada RTEs use FCFS or RR (26:5-15).

Each entry point has its own queue and the entry scheduler must use the FCFS

algorithm, as illustrated by the following quote from the LRM.

If several tasks call the same entry before a corresponding accept statement is
reached, the calls are queued; there is one queue associated with each entry.
Each execution of an accept statement removés one call from the queue. The
calls are processed in the order of arrival (8:9-v).

Although the FCFS schedule does not produce the shortest schedules (i.e., best
performance), it is non--preemptive. This allows the code within the accept statement to
‘be treated as a critical section. A critical section protects a shared data area and only
A one task should have access to this section at a time or data may be lost or overwritten
‘ (23:83). Once an entry is selected, it must be allowed to continue executing until it is
completed. No other accept statements for the tasks in the rendezvous will be allowed to
execute until the current rendezvous is complete. Preemptive schedulers, such as, the RR
and preemptive SJF, are not allowed because they may interrupt a task while in a critical

-$ection.

1.4 Scope

A formal model of Ada tasking is expected to generate performance statistics for a

sct of Ada tasks based upon specific runtime parameters, such as, the sc'.eduling algorithm
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'aﬁd ‘task execution times, The bénefit of modeling the performance is that software engi-
B fiiﬁieers will know whether or not their design meets the required performance criteria before
implementing the code. If the criteria are not met, they can modify their design until it

‘does meet the requirements or find a RTE that meets the requirements.

The model incorporates the Ada language constructs detailed in the Ada LRM (e.g.,
entries, accepts, delays, priorities) (8:Ch 9) and includes the sequence of events and timing
information, The actual model was developed mathematically and is based on consiructs
in ‘queueing theory, set theory, and real-time scheduling. Because of its matliematical
nature, this model may be difficult for non-technical people to understand; therefore, a

‘future.research effort will produce a rapid prototyping environment that will perform the
mathematics and provide a simplified user interface. The ultimate goal of (utnure rescarch
will be to create an automated tool that will return a trace of eveuts and performance

- statistics.

The basic hypothesis of this research was that a formal model of Ada tasking could he
developed, and that the model could be used to help develop design analysis environments
for distributed real-time software systems requiring Ada as their target language. Thus.
éiven a specification for such a system, the design analysis environment can be used to

-obtain the information needed to support Ada software design decisions. No effort was

made to design and implement a design analysis environment in this research effort.

1.5 Approach and Methodology

In order to develop the parameterized model, a literature search was conducted to
-determine how and why the Ada tasking constructs were defined (8:Ch 9) (15:Ch 13)
- and then a survey was conducted of existing types of formal-based models of paral-
lel/distributed computation, e.g., Petri Nets and CSP. Additionally, queueing theory and
real-time scheduling were investigated. Finally, current behavioral models of real-time
software analysis and design methodologies such as Real-Time Structured Analysis (RTSA)
and the Design Approach for Real-Time Systems (DARTS) were explored. The goal was
to ultimately incorporate the formal tasking model into one of the existing methodologies

and, in fact, the DARTS methodology was selected.
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After the initial research, the results were generalized into an Ada Tasking Model

~ which synthesized the applicable concepts gleaned from the current models and methods

‘ _.mentioned above. The initial model provided a broad base for the final parameterized

s inodel which was developed after several iterations.

Typically, a software development life cycle contains three basic phases: a software
requirements analysis phase, a software design phase, and a low-level software design and
implementation phase. The model developed for this research is part of the software design

phase and is concerned solely with the Model Design Performance block in Figure 1.1.

Software Software : Low-?evel
) “Software
= Requirements [~ _— Desi q S
. Design esign an
Analyiis | Implementation

Real-Time
Structured
Analysis

(RTSA)

- an M G WS G b G D Gl G S G D G S WD D RS S A BN AL Gk GD LD R Wb S e A S S G = ee

DARTS based

| , , |
E Il:teeﬁ:;:c . Divide Define E
i | Between || Subsystems ——f Task ;
: Subsystemsl into Tasks Interfaces E
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This research document is organized as follows: Chapter II describes formal model-

= _ing;:Chapter III defines the top-level design for a proposed performance model; Chapte: IV

" -contains a description of the detailed design of the proposed model; Chapter V discusses

validating the model; Chapter VI gives recommendations for further research. There are

" _three appendices attached: Appendix A contains a list of the acronyms used in this docu-

— vfﬁént; Appendix B contains a detailed Structured Analysis and Design Technique (SADT)
description of the Ada tasking model; and Appendix C contains the programs used to
validate the model.
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II. Modeling

) ‘ As software system requirements become more complex, software engineers need to
ié;é.i:éfully design their systems to ensure that the system adequately meets all its timing
and behavior requirements. Modeling allows a designer to create an abstraction of the
ls”ys'temand add detail in an iterative fashion as the requirements become more clearly un-
_detstood. Due to the complexity of real-time system requirements, it is extremely difficult
for a designer to initially understand the entire system and how its components inter-
~ act, According to Pritsker, “[t}he entire model building approach is performed iteratively”
- (20:5). By modeling the system with increasing levels of complexity, a designer will gain a
" better understanding of the réequirements and have more confidence that the design mects

_ those réquirements.

Coding is an éxpensive process and, once code has been written, many managers are
not willing to throw it away and start over if problems are found with the design. Tnstead.
they will encourage-the programmers to manipulate the existing code to make it fit the
new scenario. One way to save time, money, and wasted effort, when designing software,
: 7,’777’,{15 to first-develop the top-level design and then create a model of that design. The model
will allow a designer to abstract away the low-level details until the system requirements
~_-aré better understood. However, it must be remembered that an inherent problem with
- ﬁlbdels is that simplifying assumptions must be made in order to abstract away unwanted
or unnecessary détail. These assumptions must be valid or they invalidate the model since

the: model no longer accurately reflects the intended system.

~~ " 21 Definition of Models

Models for a software design are much more flexible than the code for that design;
therefore, changes can more easily be made to the model. This flexibility encourages
7 i;tﬁe designer to create the model in stages; ultimately creating a software design model
which accurately portrays the real system and meets the stated requirements. Modeling
iriri:é\l}s,o allows a designer to compare multiple approaches to solving a problem. Thercfore,

- a designer can confidently choose to implement the design which represents the optimum
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~ .s6lution, Once the model has been used to analyze a proposed software design, the code
can be written and the designer will have confidence that the code will accurately reflect

ithe requirements of the system.

There are several types of models: descriptive (natural language); physical (actual

7 representation); symbolic language (mathematical); graphical; and procedural (simulation)
(9:6). The models of interest to this research are the symbolic and graphical models. The
symbolic models are concise, formal models which mathematically describe a system’s

‘behavior. Graphical models describe the behavior of a system pictorially.

This chapter present:s -an overview of the following formal models: Communicating
‘Séquential Processes (CSP) (13), Petri nets (19), and Unbounded Nondeterministic Iter-
ative Transformations (UNITY) (4). Additionally, three graphical models are described:
Real-Time Structured Analysis (RTSA) (2), Design Approach for Real-Time Systems
(DARTS) (11), and Structured Analysis and Design Technique (SADT) (12); and the

top-level design of the Ada tasking model is introduced.

2.2 Formal Models of Parallel/Distributed Computation

2.2.1 Communicating Sequential Processes (CSP). CSP, a formal model
developed by C.A.R. Hoare (13), can be used to model event driven systems. CSP had a
strong influence upon the design of the Ada rendezvous; however, while the rendezvous in
Ada is one-sided, or asymmetric, the communication between tasks in CSP is symmetric
(15:306-308). The asymmetry of Ada task communication allows one task to call another
task, such;trhat, the called task does not know the name of the task which is calling it. The

result of the asymmetry is-that entry queues may be formed.

Processes in CSP can execute concurrently by communicating via message passing;
although processes in CSP can execute concurrently, only one event is allowed to occur at
a given time. Hence, 1t is not possible to determine if two events happened simultaneously.

If strict concurrency is necessary, it must be modeled as a single-event occurrence.

22,2 Petri Néts. Petri nets combine graphical and mathematical notations. As

with CSP, it is not possible to model simultaneous events (19:37). The execution of a Petri
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: net Is nondeterministic (19:36) and general Petri nets abstract away timing issues: “There
: ii3§:skno‘inherent measute of time or the flow of time in a Petri net” (19:35). In addition, a
“major disadvantage of Petri nets is that the complexity of the model increases with the

size of the system. This increased complexity means that they tend to be useful only for

‘manually modeling small systems.

2238 UNITY. UNITY, developed by Chandy and Misra, is a “computational
model and a proof system” (4:8). The goal of UNITY is to mathematically design programs,
at a high-level, which are free from implementation issues, such as computer architecture
- and language, and whose correctness can be proven. The disadvantages of UNITY are
" that it is hard to understand a.nd‘préving that the high=level UNITY program meets the
~ requirements does not mean that the program implementation meets the requirements.

Another disadvantage of UNITY is that it abstracts away timing issues and does not allow

_a designer to specify a control sequence, Thus, timing issues cannot be modeled in UNITY.

The formal models mentioned in this section, i.e., CSP, Petri nets, and UNITY, are
adequate for modeling the behavior of the system; however, they ignore timing require-

- -ments and are difficult to apply. The next section discusses three graphical models.

2.3 Graphical Models

2,3.1 Real-Time Structured Analysis. RTSA, a variation of structured anal-

- : 7ysis and design developed by Yourdan and DeMarco, is used during the software requite-

ments analysis phase. (Sée Figure 1.1 for the Software Life Cycle.) RTSA extends the

-traditional data flow diagrams to include timing information through the use of control
- flows and transforms. The designer creates the data flow/control flow diagrams during
RTSA and supplements the diagrams by natural language or state transition diagrams.
The disadvantage of RTSA is that it has no formal mathematical basis that can be used

-t6 analyze the resulting RTSA design.

2.3.2 Design Approach for Real-Time Systems. DARTS is also an extension

of structured analysis and design. Using a RTSA input, DARTS focuses on decomposing




" ~- a system into a set of concurrent tasks and models the inter-task communication. After

. DARTS is completed, each subsystem has been divided into sets of tasks which operate

concurrently and each task has a single thread of control. However, DARTS does not

~_ specify the timing, hardware, or RTE requirements, and as with RTSA, the DARTS design

) has no mathematical basis for evaluating the quality of the design.

DARTS is performed after the software requirements analysis has been completed

~ and it has four steps (represented within the dashed lines in Figure 2.1):

-o define the interfaces between the subsystems;
-e structure the subsystems into parallel tasks;
o define the interfaces between the tasks; and

o design individual tasks using structured design.

2.3.3 Structured Analysis and Design Technique!. SADT (12), as the name

suggests, is also a variation of structured analysis and is used during the software require-

ments phase. (See Figure 1.1 for the Software Life Cycle.) As with RTSA and DARTS,

-an.SADT design has no formal mathematical basis and cannot be proven mathematically. -

SADT is described here in detail because SADT was used in the requirements analysis,

specification, and design of the developed Ada tasking model.

A géneri¢ SADT diagram is shown in Figure 2.2.

2,8.3.1 Interfaces: The basic element in SADT is the function whicli de-
. -scribes a process or action and is represented by a box. The arrows define interfaces and

-are-described in the following quote.

Interfaces are represented by arrows entering or leaving the box. The type of
interface is indicated by the side of the rectangle to which it is connected ...
_ input arrows enter the left side of the function box, output ariows leave the
right side of the box, control arrows enter the top of the box, and mechanism

~ 'SADT is a trademark of SofTech.
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Figure 2.2. Generic SADT Diagram

arrows either enter or leave the bottom of the box. The function is viewed as
transforming its inputs into outputs under the guidance of its controls. (12:7)

SADT descriptions do not impose timing requirements so the arrows merely reptesent
constraints; a function cannot commence unless its control and inputs are available. “The
functions represent processes that must occur, but may in fact occur simultaneously. The
arrows represent data or information produced by or needed by a function. They should

not be viewed as flows or sequences of operations” (12:7).

Additionally, every function requires at least one control arrow and one output arrow.
regardless of whether or not there are any input or mechanism arrows. The mechanism

arrows “indicate a means of performing the function” (12:7).

2.3.3.2 Hierarchy of Numbering. SADT has a special numbering system
which denotes the hierarchical level of decomposition. Each function box label begins with
an “A” which stands for “Activity.” The top-level, or environment model, is labeled as
level A-0 and contains a single box. This box shows the interconnection of the system
to be modeled with its environment. The first level of decomposition is labeled A0 and

represents the major subfunctions of the system. Each of the boxes, or functions. at level
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A0 are sequentially labeled A1, A2, etc. In turn, the functions on the level Al diagram
are labeled A11, A12, etc. This numbering system facilitates determining the level of the

diagram and maintaining consistency between the levels.

2.4 Deficiencies of Real-Time Models

The formal models described in Section 2.2 model the behavior of the system but
are either too complex to use, ignore timing requirements, or both. The graphical models
described in Section 2.3 lack the formalism of the formal models which is important when

analyzing the design.

Because real-time systems have these timing constraints, in addition to behavioral
constraints, a formal software design analysis model is required which incorporates per-
formance, timing, and behavioral constraints. Consider, for example the DARTS design
methodology, the box labeled Model Design Performance in Figure 2.1 is an additional
step added to DARTS which deals with solving these deficiencies, and the ohject of this
research is to analyze the feasibility of constructing such a model. Specifically, the next

chapter introduces the top-level design for the design performance model.




III. Design of the Ada Tasking Model

This chapter describes the top-level design of the performance model of Ada tasking.
The Model Design Performance activity in Figure 3.1 is performed after the initial DARTS
design has been accomplished. If application of the performance model shows that the
software design fails to perform as required, then the software design must be modified
or reaccomplished and the performance model reapplied. This feedback loop continues
until such time as it is determined the software design satisfactorily meets its performance

requirements.

3.1 Model Design Performance

Figure 3.1 is an SADT diagram representing the environment, or A-0 level diagram.
The function, Model Design Performance, is an extension to DARTS and is applicd after
the initial DARTS design has been completed. Model Design Performance requires that the
software design first be produced using DARTS. In addition, Model Design Performance

requires the non—functional requirements and scheduling information about the RTE.

The Model Design Performance activity is decomposed into two functions: Dcfine
Task Performance Requirements (A1) and Model Ada Tasking (A2). Note that the output
arrow, Performance Data, has been decomposed into schedulable, task schedule, enlry
trace and performance stats. The decomposition for Model Design Performance is shown
in Figure 3.2, representing the A0 level, and the activities A1 and A2 are described in the
Sections 3.2 and 3.3.

3.2 Define Task Performance Requirements

The function, Define Task Performance Requirements, has three interface arrows: the
control arrow is the software design; the input arrow is the non-functional requircments;
and the output arrow is the task information which includes the task names, periods,
execution times, etc. (For more detail on the task information, see the data dictionary
in Appendix B.) Note that there is no mechanism for this function. The remainder of

this research concentrates on developing the Ada Tasking Modei (level A2) with certain
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assumptions made about the outputs of A1. A more comprehensive examination ol defining

task performance requirements (A1) will be accomplished in follow-on research.

3.3 Model Ada Tasking

The function A2, Model Ada Tasking, has six interface arrows: one mechanism, four
outputs, and one control. The mechanism arrow is the RTE. The four output arrows are:
schedulable, which is a Boolean flag that tells the designer if the tasks can be scheduled
based upon the given RTE and task information; task schedule, which is a possible schedule
based upon the scheduling information from the RTE mechanism and the task information;
entry trace, which is a possible sequence of entry points based upon the task schedule; and
performance statistics, which are statistics describing the design performance. The control

arrow is the task information which is the same as the output arrow from function Al.

The task information includes the task name, execution time, period, etc. In order
to schedule a group of tasks, the task execution time (E;) and period (7;) must be known.

These values are used to decermine each load factor which is the execution time of a task
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divided by its period (%) Each processor may only execute a set of tasks if the sum of

their load factors is less than 1, where 1 represents 100% utilization of the processor.

The basic components of the Ada tasking model (shown in Figure 3.3) are Deter-
mine Unschedulability, Create Schedule, and Model Entry Calls, Functions A21 and A22
determine if the given set of tasks are schedulable and, if so, a schedule is found. Func-
tions A21-A23 are summarized helow; the details of these functions have been placed in

Appendix B.

task info
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Figure 3.3. Level A2

3.3.1 Determine Unschedulability. Function A21, Determine Unschedulabil-
ity, has four interface arrows: a control arrow labeled task info; an input arrow labeled
num processors; and two output arrows labeled bounds and schedulable. The interface ar-
rows, task info and schedulable, were defined above. The interface arrow, num processors,

refers to the number of processors which will be used in the target machine for the system
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the designer is modeling. The interface arrow, bounds, is an integer range which defines
the upper and lower bound on the number of processors required for the target machine.
If num processors is within this range and if schedulable is true, then the designer can
proceed to Level A22, If either of these conditions is false, then the designer must either
redesign the software tasks (i.e., reapply DARTS) or change the number of processors in
the system specification. Redesigning the software is the logical first step; changing the

system specification should only be done as the last resort.

Note that function A21 only determines if the given set of tasks cannot be scheduled
and does not guarantee that the tasks are, in fact, schedulable. Hence, the algorithm used
to determine unschedulability is a necessary condition, not a sufficient condition. The only
way to know for certain if the tasks are schedulable is to apply function A22 and actually

create a schedule of the tasks.

3.3.2 Create Schedule. Function A22, Create Schedule, is performed after the
design passes Level A21. This function has five interface arrows: a control arrow labeled
schedulable; two input arrows labeled num processors and task info; a. mechanism arrow
labeled scheduler info; and an output arrow labeled task schedule. The interface arrows.
labeled schedulable, num processors and task info are defined above. The mechanism arrow,
scheduler info, refers to the type of task scheduler used in the RTE. The output arrow,
task schedule, is the schedule of tasks which were developed in the DARTS design.

3.3.8 Model Entry Calls Function A23, Model Entry Calls, has four interface
arrows: a control arrow labeled task schedule which is a schedule of the tasks which were
developed in the DARTS design; an input arrow labeled task info which includes the
task names, periods, execution times, etc.; and two output arrows labeled entry trace and
performance stats. The entry trace is a sequence of the entry points and the performance

stats are statistics describing the design performance.

The next chapter describes Model Entry Calls in detail after providing background

information on Ada entry points and arrival distributions.

3-5



T e

IV. Model Entry Calls

4.1 Ada Entry Points

There are two main distinctions among entry points. The first distinction is between
single entries and entry families, A single entry queues its calls according to the FCFS
discipline. An entry family queues its calls according to the index associated with the call,
where the index can denote the priority of the call. Entry families represent a hierarchy
of queues; each index has its own entry queue which uses the FCFS discipline. Thus, calls

can be accepted from the queues in the order of their index which allows a priority scheme

to be developed.

The second distinction is among timed, conditional, and simple entries. A timed entry
allows balks; this call is cancelled if the rendezvous does not begin within the specified time.
A conditional entry is a special case of the timed entry with the time limit set to zcro.
The call is cancelled unless the rendezvous can occur immediately. The simple entry can
be thought of as a timed entry with a time limit of infinity. A simple call is not revoked

once it has been issued,

Combining the above categories gives six types of entry points: single timed, single
conditional, single simple, family of timed, family of conditional, and family of simple

entries. Table 4.1 describes the diiferent types of entries and how they will be modeled.

4.2 Modeling Assumptions

The interarrival and service times will be modeled by the exponential distribution

based on the following assumptions:

o the current arrival/service time is independent of the last arrival/service; and

o the arrival/service time is independent of the number in the entry queue.

These assumptions appear to be valid for the Ada Tasking Model because the time
since the last arrival and the time in service refer to real or continuous time and not

to computer processing time which may be affected if the task is swapped out of the
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Table 4.1. Modeling Entry Queues

Entry Queueing | Service

Type Model | Algorithm | Balks
: single M/M/1 FCFS no

simple _

single M/M/1 FCFS yes

timed _

single M/M/1 FCFS yes

conditional

Tamily M/M/m | FCFS no

simple

family M/M/m FCFS yes

timed

family M/M/m FCFS yes

conditional

processor. Additionally, these assumptions are frequently used, as demonstrated by the

following quote from Trivedi (25:114):

Thus the following random variables will often be modeled as exponential:

1. Time between two successive job arrivals to a computing center (often called
interarrival time).

2. Service time at a server in a queuing network; the server could be a resonrce
such as the CPU, I/0 device, or a communication channel.

Therefore, the entry queues will be modeled using M/M/1 queues. The term
“M/M/1” comes from Kleinrock (16) who uses the notation “A/B/m/K/M" to describe
queueing systems. The “A” represents the arrival distribution and “B” represents the

service distribution. The following quote from Kleinrock further explains the notation.

m-Server queue with A(t) and B(z) identified by A and B, respectively, with
storage capacity of size K, and with customer population of size M (if any of
the last two descriptors are missing they are assumed to be infinite) (16:399)

In this instance, the queues are single servers with the interarrival distribution, A ().

and service distribution, B(z). Both of these distributions are described as A/ which means
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3 .
- that they denote the exponential distribution. The Probability Distribution Function
(PDF) of the exponential distribution is (16:65):

X(t)=1-e fort>0 (4.1)

The Probability Density Function (pdf) is, therefore (16:65):

2(t) = .‘i’_(i;(_")) == deM for t20 (4.2)

The exponential distribution is especially interesting due to its memoryless property
which states that, “the past history of a random variable that is distributed exponentially
plays no role in predicting its future” (16:66). This property is represented by the following

equation, where,

PIX<t+s]X>s]=P[X <1 (1.3)

Thus, the arrival time is independent of when the last arrival occurred and the service
time is independent of the time already spent in service. Another assumption is that the

system is in steady state.

The assumption of M/M/1 queues also keeps the solution of the queueing network

tractable, as illustrated by the following quote:

When one relaxes the Markovian assumptions on arrivals and/or service times,
then extreme complexity in the interdeparture process arises not only from its
marginal distribution, but also from its lack of independence on other state
variables. (16:155)

4.2.1 Arrival Distributions, Calls arrive at the entry queues according to cither
a random or general distribution. (For the purposes of this research, a general distribution
refers to a non-random distribution, e.g., a deterministic distribution.) In addition, calls

may or may not repeat. Repeating, or cyclic, calls may occur with either a random or
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general distribution, both of which may repeat at a known frequency. Non-repeating calls
are also based upon random or general distributions and can be thought of as repeating

calls with an infinite period.

Random calls can be made from either the hardware or the software; general calls can
only be made from the hardware because Ada offers no timing guarantees for the software
entry calls. Additionally, even though the hardware can make entry calls at a specified
time, the Ada tasking facility accepts these calls in an arbitrary manner (8:9-13) (15:285).

Therefore, arrivals to the entry queues are assumed to be random.

4.2.2 Service Distributions, Regardless of the arrival pattern, the service time
of the entry calls is random because of the inherent randomness (nondeterministic nature)
of select statements within Ada’s tasking facility. “If several alternatives can be selected,

one of them is selected arbitrarily” (8:9-13).

The assumption of random service is not as crucial as the assumption of random
arrivals. M/G/1 queues can still be modeled using the M/M/1 queueing network equations

which are used in this research (17:226).

4.2.3 General Distributions. If the Ada tasking facility were to be changed
in the future so that it incorporated timing guarantees, then the following modifications
would be necessary to the model: model general arrival times with the G/M/1 queue:
model general service times with the M/G/1 queue; and model both gencral arrivals and

service times by the G/G/1 queue.

4.3 Entry Call Model

Figure 4.1 depicts level A23 of the Ada Tasking Model design. This level has six
activities: Get Entry Precedence Requirements; Create Entry Trace; Create Network of
Entry Queues; Model Arrival Patterns; Solve Network Equations; and Gather Performance

Statistics. The following sections provide a summary of the six functions. For more details,

see Appendix B.




PR AT R A

L

St 2T
LR TR

PR AL A
'

task schedule

precedences

network

task Get Entry
_info Precedence
Requirements
A23}
i ‘
Create
Network
: of Entry
Queues 533
]
Model
- Arrival arrivals
task Patterns
scheduld A234

Solve

Network

entry trace
il

Equations
A235

solution

entry tracq

Gather
Performance
Statistics

A236

gerfosmanu

stats

Figure 4.1. Model Entry Calls — Level A23

4-5




4.3.1 Get Entry Precedence Requirements. Function A231, Get Entry
Precedence Requirements, has three interface arrows: a control arrow labeled task sched-
ule; an input arrow labeled task info; and an output arrow labeled precedences. The arrow
task schedule is a schedule of the tasks designed in DARTS. The task information includes
the task names, periods, execution times, precedences, etc. The arrow precedences refers
to the NxN matrix of dependencies which is developed from the precedence information

contained in task info.

The precedence requirements are input by the designer in the form of task info. The
precedences are transferred to an NxN matrix, where N is the number of entry points. The
matrix contains Boolean values, with dependencies denoted by TRUE. The function, Ge!
Entry Precedence Requirements reads in the precedence requirements and outputs an NxN

matrix depicting those precedences.

4.3.2 Create Entry Trace. Function A232, Create Entry Trace, has two in-
terface arrows: a control arrow labeled precedences, which is output from function A231

(Section 4.3.1) and an output arrow labeled entry trace, which is a sequence of entry points.

The function, Create Entry Trace, creates one possible sequence of entry calls based
upon the precedence matrix. The entry trace will be created using a CSP-like language:
the alphabet consists of the entry points. Another use for the entry trace is to show
whether or not deadlock occurs within the system. Section 4.3.6 details the uses of the

entry trace,

4.3.3 Create Network of Entry Queues. Function A233, Create Network
of Entry Queues, has three interface arrows: a control arrow labeled precedences, which
originates from Function A231; an input arrow labeled task info, which was described
in Section 4.3.1; and an output arrow labeled network, which is the queueing network.
The queues represent the entry points, i.e., the accept statements. The queueing network
will be modeled as a network of M/M/1 queues. The connections between the separate
queues are contained within an NxN matrix Q. This matrix is similar to the precedence

matrix described above except that the entries are values between 0 and 1 which denote
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the probability of leaving queue { (represented by row i) and entering queue j (represented

by column j).

The function, Create Network of Eniry Queues, reads in the precedences matrix
and the task info and produces a queueing network matrix depicting the interconnections

between the entry queues.

4.3.4 Model Arrival Patterns. Function A234, Model Arrival Patterns, has
four interface arrows: a control arrow labeled network, which originates from function
A233; an input arrow labeled task info, which was described in Section 4.3.1; an input
arrow labeled task schedule, which originates from function A22; and an output arrow

labeled arrivals, which describes the arrival distributions for each of the queues.

The function, Model Arrival Patterns, assigns an arrival distribution to each of the
entry queues. As previously stated, this research assumes the arrival patterns can be
modeled using the exponential distribution. If future changes are made to the Ada tasking
facility which nullify these assumptions, then this segment of the model will need to be
redefined. However, as mentioned previously, this model is valid for cither M/M/1 or

M/G/1 queueing networks.

4.3.5 Solve Network Equations. Function A235, Solve Network Equations, has
four interface arrows: a control and input arrow labeled arrivals, which originates fiom
Function A234; an input arrow labeled network, which originates from Function A233: and
an output arrow labeled solution, which is a matrix of equations that solve the queneing
network. The function, Solve Network Equations, reads in the network matrix and the

arrival distributions and finds the arrival rates (1) and the service rates (u).

Because the queues are assumed to be M/M/1, the network can be modeled using
Jackson network equations (16:149-150). Jackson’s method allows open or closed networks
and feedback. The individual queues are referred to as “nodes” and the arrivals as *cus-
tomers.” Arrivals from outside the system arrive according to the Poisson distribution

(e.g., interarrivals have exponential distributions) at the rate 4;. Customers move from
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node j to node i with probability r;j;. (Note that the probability of a customer leaving

node j and feeding back to the same node jis r;;.)

The total arrival rate of customers to node i is found by summing the outside ar-
rivals and the internal arrivals which arrive from nodes within the network. The following

equation represents the total arrival rate for node i.

N
Ai=v+ 2 /\jr,-.- fori=1,2,.,N (4.4)
=1

A network of N nodes will have N equations of this form.

4.3.6 Gather Performance Statistics. Function A236, Gather Performance
Statistics, has three interface arrows: a control arrow labeled solution, which is the output
from function A235; a control arrow labeled entry trace, which is the output from function
A232; and an output arrow performance stats, which describes the performance statistics

generated by the model developed within this thesis.

The function, Gather Performance Statistics, gathers and calculates queueing statis-

tics, such as:

e arrival rate (A)

service rate (u)

utilization of queues (p)

time in queue (T)

number in queue (N,)

service time (S)

o wait time (W)
The statistics gathered from the queueing network are averages. See Appendix B for the
equations.

The entry trace generates a sequence of the entry calls. The remainder of the infor-

mation gained from the entry trace depends upon the implementation of the trace. This
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model assumes that the trace will be implemented as print statements within the program
and that the entries will be time stamped. Thus, information gathered from the entry
trace, in addition to the list of entries, is the number of times each entry was called, when

the calls were made, and general information for the interarrival and service distributions.
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V. Validation

This chapter contains the first attempt at validating the performance model of Ada
tasking, The validation compares the results of applying the Ada Tasking Model with
a queueing simulation and an Ada implementation. The Dining Philosophers problem
was chosen to demonstrate the validation because it is a well-defined problem requiring

concurrent programming,

The life cycle for this validation, shown in Figure 5.1, parallels the life cycle defined
in Figure 1.1. The numbers in Figure 5.1 correspond to the sections where each of the
phases are developed. A general application of the model is contained in Section 5.7 and

Section 5.6 contains the application for a specific case.

Implementation
re oo ==- <
1 X 1
) Simulate }
: Queueing :
™1 Model in T
1 SLAM I 1
Requirements ) 1
Design ! — !
analysis D T - : '
i ! t :
I ! i
Define 1| DARTS Apply , : | Discuss
. ' >
Dining -——-,: Design Ada Tasking i | | Results
Philosophers ) Model | ! ! L7
| ! | ) 5,
5.1 | 52| 5.3.5.6 i I Implemeny |
L |
:_ _______________ _: > in Ada T
i !
i 58 t
)

Figure 5.1, Validation Life Cycle

5.1 The Dining Philosophers

The Dining Philosophers, first presented by E.W. Dijkstra (10:83-99) (13:75-81), is
a classic synchronization problem which is used to benchmark concurrent programming
facilities because it illustrates deadlock and starvation problems among shared resources.

Hoare describes the Dining Philosopher problem as follows:
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In ancient times, a wealthy philanthropist endowed a College to accommodate
five eminent philosophers. Each philosopher had a room in which he could
engage in his professional activity of thinking; there was also a common dining
room, furnished with a circular table, surrounded by five chairs ... To the left
of each philosopher there was laid a golden fork, and in the centre stood a large
bowl of spaghetti, which was constantly replenished. (13:75)

In order to eat, the philosopher picks up the forks closest to him, one at a time. Once
the philosopher obtains both forks, he eats until he is no longer hungry, puts down the
forks, and goes away to think until he is hungry again and then the whole process repeats.
Once a philosopher has possession of a fork, he will not relinquish it until he has finished

eating, causing potential problems with deadlock and starvation.

Deadlock occurs when all five philosophers decide to eat at the same time and each
picks up one fork. None of the philosophers will release his fork until he has eaten, but
none of the philosophers can eat until he gets another fork; the philosophers are deadlocked.
Starvation is slightly different from deadlock in that one or more of the philosophers obtains
both forks and eats while another is never able to pick up both forks and, thercfore, starves

to death.

The Dining Philosopher implementation used to validate the Ada Tasking Model
employs a host to ensure that deadlock will not occur. Each philosopher must ask the host’s
permission to enter and leave the dining room and the host allows only four philosophers
in the dining room at a time; thus, ensuring that at least one of the philosophers will he
able to eat at a time. Deadlock has been avoided (10:88). Note that starvation may still

occur if one of the philosophers sits at the table and never gets both forks.

5.2 Design Approach for Real-Time Systems Design

Figure 5.2 depicts the state flow for one of the philosophers in the Dining Philosophers
problem. Once a philosopher enters the system he continues to eat and think until he dies.
The following sections describe the DARTS design for the Dining Philosophers problem

and describe the task information required to apply the tasking model.
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Pick up
Right
Fork

Put down
Left

Fork

Put down
Right
Fork

Figure 5.2. Flow Diagram for Dining Philosopher




5.2.1 DARTS Design. Figure 5.3 shows the DARTS diagram for one of the
philosophers. Enter Dining Room, and Leave Dining Room have been placed in the task
Host. Pick Up Left Fork, Pick Up Right Fork, Put Down Right Fork, and Put Down
Left Fork have been condensed to Pick Up Fork and Put Down Fork in task Fork. The
Philosopher task makes calls to Host and Fork. Note that there are five fork tasks, five

philosopher tasks, and one host task.

put down

Host/
Dining Room

pick up

put down

Figure 5.3. DARTS Design for Philosopher ¢

Before eating, each philosopher must ask the host’s permission to enter the dining

room by issuing the call Enter. The host will only allow four philosophers into the dining

room at a time so that deadlock will not occur.
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After entering the dining room, the philosopher sits in his chair and tries to pick up
the fork on his left (Fork ) and the fork on his right (Fork i @ 1). Table 5.1 shows the
left and right fork numbers for each of the philosophers and Figure 5.4 shows the relative

positions of the seats and the forks. (Note, the symbol & is used to denote modulo 5

addition (13:75).)

Table 5.1. Fork Numbering

Philosopher | Left Fork | Right Fork
0 0 1
1 1 2
2 2 3
3 3 4
4 4 0

Figure 5.4. Fork Diagram for Dining Philosophers
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After eating, the philosopher puts down both of his forks and notifies the host that
he is leaving by issuing the call Leave. The calls Enter and Leave allow the host task to

keep track of the number of philosophers currently in the dining room.

5.2.2 Task Information. There are eleven Ada tasks: one Host task; five Fork
tasks; and five Philosopher tasks. The Host task has two Ada entry points: enter and
leave. Each Fork task has two entries: pick up and put down. The Philosopher tasks
have no entries; each philosopher places calls to the Host and Forks. The twelve entries are

enumerated in Table 5.2. Philosopher i repeats the eating-thinking cycle with frequency f;.

The precedence requirements are defined by the order in which the entry calls can

be made. The following list uses CSP notation to show the order of calls for Philosopher i:

Philosopher; = (i.enter — i.pick up fork i —s i.pick up fork (i & 1)
~— i,put down fork (i & 1) — i.put down fork i —
i.leave — Philosopher;)

The symbol < is the precedence operator where i <- § means that i is dependent
upon j. Every entry point is dependent upon all the other entry points in steady state
because the problem is circular. The precedences shown here are partial precedences that
only describe the previous precedence. The partial precedences for Philosopher i are shown

below.

e enter < leave
o pick up fork ¢ < enter
o put down fork ¢ < pick up fork ¢

¢ leave < put down forks

In addition, each of the forks may have the following precedences, depending upon

which philosopher is eating.

e pick up fork 1 < pick up fork 0 (for Philosopher 0)
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e pick up fork 2 < pick up fork 1 (for Philosopher 1)
e pick up fork 3 < pick up fork 2 (for Philosopher 2)

o pick up fork 4 < pick up fork 3 (for Philosopher 3)

pick up fork 0 < pick up fork 4 (for Philosopher 4)

put down fork 0 < put down fork 1 (for Philosopher 0)

put down fork 1 < put down fork 2 (for Philosopher 1)

put down fork 2 < put down fork 3 (for Philosopher 2)

put down fork 3 < put down fork 4 (for Philosopher 3)

put down fork 4 < put down fork 0 (for Philosopher 4)

5.3 Application of the Ada Tasking Model

This section demonstrates how to apply the tasking model. The steps of the model

are:

Get Precedence Requirements;

Create Entry Trace;

Create Network of Entry Queues;

Solve Network Equations;

Gather Performance Statistics.

These steps are defined in Figure 4.1 in Chapter IV. Notice that “Model Arrival
Patterns” was not included because the model assumes the arrivals are distributed expo-

nentially.

5.3.1 Get Precedence Requirements. The entry points and their reference
numbers are shown in Table 5.2. These numbers will be used as matrix indices throughout
the remainder of the application of the model. Note that each Ada entry point is modeled

as a separate queue,
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___Table 5.2, Entry Points
Entry # | Entry Name
1 Enter
Pick Up Fork 0
Pick Up Fork 1
Pick Up Fork 2
Pick Up Fork 3
Pick Up Fork 4
Put Down Fork 0
Put Down Fork 1
Put Down Fork 2
10 Put Down Fork 3
11 Put Down Fork 4
12 Leave

wjoo[~3fnjonpn]aiN

The procedure Create Precedence Matriz from Section B.7.1 in Appendix B was used
to transfer the task information into a NxN matrix; N=12 in this case because there arc 12
entry points. The precedence matrix, shown in Figure 5.5, contains Boolean values, such
that T = True and F = False, (The False entries have been omitted from the figure in
order to make it more readable.) The “T” in the matrix represents a precedence between

the column and the row, i.e., i < j

1]2(3|4]5]6]7]8|0]10]11]12
1 T|T|T|T|T|T|T|T|T|T]|1
2 T T T
3 T T T
4 T T T
5 T T T
6 T T|T
7 T|T
8 T T
9 T T |
10 T T |
11 T T
12| T

Figure 5.5. Precedence Matrix
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5.3.2 Entry Trace. This section is based upon the Dining Philosophers example
in Hoare’s text (13:75-81). There are three basic tasks in the implementation of the dining

philosophers: host, philosophers, and forks; thus, there are three alphabets which are

shown below with their respective behaviors.
5.3.2.1 Philosophers. Each Philosopher may enter or leave the dining

room and pick up or put down forks. The alphabet for the philosophers is:

a Philosopher; = {i.enter,ileave,i.pick up fork.i,i.pick up fork.(i ® 1),
i.put down fork.i,i.put down fork.(i® 1)}

A sample of Philosopher i’s behavior is shown below.
Philosopher; = (i.enter — t.pick up fork.i — i.pick up fork.(i® 1) —
i.put down fork.(i® 1) — i.put down fork.i
— t.leave — Philosopher;)
5.3.2.2 Forks. Each Fork can be picked up or put down. The alphabet for
the forks is:
o Fork; = {i.pick up fork.i,(i© 1).pick up fork.i,
i.put down fork.i,(i© 1).put down fork.i}
The fork’s behavior is:
Fork; = (i.pick up fork.i — i.put down fork.i — Fork; |

(1©1).pick up fork.i — (i © 1).put down fork.i — Fork;)

5.3.2.3 Host. The host allows the philosophers to enter or leave the dining
room. The alphabet for the host is:

a Host = Ui, {i.enter, i.leave}
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The host only allows philosophers to enter if the dining room is empty because there are

no philosophers to leave.
Hostp = (i.enter — Host,)

The Host will allow the philosophers to enter or leave when there are 1 to 3 philosophers

in the dining room.
Host; = (i.enter — Host;4y | i.leave — Hostj-1) for j € {1,2,3}

When four philosophers are in the dining room, the host will only allow philosophers to

leave since four is the maximum number allowed in order to prevent deadlock.

Host4 = (i.leave — Hostj)

5.8.2.4 Concurrency. The components work together concurrently and

are described as follows:

Philosophers = ( Philosophery|| Philosophery||Philosophers|| Philosophers|| Philosopher )
Forks = (Forko||Fork,||Fork,||Forks||Fork,)

Dining Philosophers = (Philosophers || Forks || Host)

5.3.2.5 Trace. A CSP-like trace can be created either manually or via
automation. The trace for this implementation was created by embedding commands in
the Ada program. Both the Ada code and entry trace are located in Appendix C. A

portion of the trace is shown in Figure 5.6.

5.3.3 Create Network of Entry Queues. The next step in applying the Ada
Tasking Model is to create the entry queue network. The queueing network may be drawn
manually if the number of queues is small; otherwise, an NxN matrix is created, where the
indices represent the entry queue numbers. Figure 5.7 shows the queueing network for the
entry queues. Although this network only has sixteen queues, it is still unwieldy to draw;
therefore, matrices are used for this model because they are much easier to manipulate

and store on a computer.
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Philosopher C enters dining room — Philosopher 0 picks up fork 0 —
Philosopher 0 picks up fork 1 — Philosopher 1 enters dining room —
Philosopher 2 enters dining room — Philosopher 3 enters dining room —
Philosopher 2 picks up fork 2 — Philosopher 3 picks up fork 3 —
Philosopher 3 picks up fork 4 — Philosopher 0 puts down fork 1 —
Philosopher 1 picks up fork 1 — Philosopher 0 puts down fork 0 —
Philosopher 0 leaves dining room —— Philosopher 4 enters dining room —
Philosopher 3 puts down fork 4 —+ Philosopher 4 picks up fork 4 —
Philosopher 3 puts down fork 3 — Philosopher 2 picks up fork 3 —
Philosopher 4 picks up fork 5 — Philosopher 3 leaves dining room —
Philosopher 2 puts down fork 3 — Philosopher 4 puts down fork § —
Philosopher 2 puts down fork 2 — Philosopher 1 picks up fork 2 —
Philosopher 4 puts down fork 4 — Philosopher 2 leaves dining room —
Philosopher 4 leaves dining room — ..

Figure 5.6. Entry Trace for Dining Philosophers

The rj; matrix, shown in Figure 5.8, represents the probabilities of transitioning
between queues, e.g., r;; is the probability of moving from queue j to queue 7. If r;; equals
zero, then the transition between the queues cannot occur. The queue interconncctions
are determined from the precedence matrix in Figure 5.5 and the r,; values are calculated

in Section 5.3.4.

Note that the matrix has been expanded from 12x12 to 16x16 matrix. The Leave
queue will be used to model the thinking time for the philosophers; therefore, the Leave
queue was expanded from one to five queues. This was done so that the queueing model
could allow the philosophers to have their own “think” queue; thus, allowing the possibility

for independent thinking rates.
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Figure 5.7. Queueing Network for Dining Philosophers
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5.8.4 Solve Network Equations. This section calculates the r;; probabilities
for the general case; Section 5.6 solves the equations for a specific case. In order for the
queueing network to be in steady state, no deaths will occur; therefore, the probability of

leaving queues 12-16 and entering queue 1 is equal to 1.
P21 = P31 = T14,1 = 715,10 = M1 = 1

Note that this network is a closed system with five customers and that the external
arrivals (7;) are 0 because the system is closed. The system has sixteen queues; therefore,

there are sixteen simultaneous equations to solve of the form:

N
Xi=vi+ D oridj fori=1,2,..,16 (5.1)

=1

Because the +;’s are zero, this set of equations does not have a unique solution. However.
At is equal to the sum of all the philosopher’s arrival rates and can be substituted into the

following set of equatiions to gain a unique solution.

A1 = P22 + 113,103 + T14,0014 + 715,105 + T16,1 M6
Az = 120 + Te 26

A3 = T 3A1 + 72,302

A4 = T14A1 + T34l

As = T1,5A1 + 74574

A6 = T1,6A1 + T56As

A7=To7M2+ 73728

Ag = 73,803 + T9 A9

A9 = 14,904 + T10,9M10

A10 = 75,1045 + T11,10A11

A1 = 76,1126 + T7,11A7

A12 = T7,12M7
A13 = 78,1328
A4 = g14)9

Ats = T10,15A10

Mg = T11,16 M1
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5.3.5 Calculating the rj;’s. The r;;’s denote probabilities of transitioning be-
tween queue j and ¢ and the sum of the probabilities leaving a queue is 1. Note that each
of the rows of the rj; matrix in Figure 5.8 denotes the probability of leaving a specific
queue, hence, the r;;’s in each row must sum to 1. Thus, the following equations may be

obtained from the r;; matrix.

m2+r13+ra+rs+rie=1 probability of leaving queue 1

roatrar=1 probability of leaving queue 2
r3a+r3s=1 probability of leaving queue 3
rq5+r49=1 probability of leaving queue 4
Tse+ 510 =1 probability of leaving queue 5
r62+ re11 =1 probability of leaving queue 6
e+ 72 =1 probability of leaving queue 7
rg7+rg13=1 probability of leaving queue 8
rog + To14 = 1 probability of leaving queue 9
7109 + 10,15 = 1 probability of leaving queue 10
Mito+ e =1 probability of leaving queue 11

Each of the philosophers completes an eating-thinking cycle with frequency f;. Thus,
the arrival rate at queue 1 (\;) is equal to the sum of these frequencies, i.e., \; = b, fi.
The relationship between the frequencies is arbitrary, so assume that the frequency at

which the philosophers eat is related by the following equation:

fo=—=——=—=ﬁ- (5.'2)

where the x;’s are arbitrary constants. This relationship allows a general solution to be

developed for each of the r;; probabilities.

5.8.5.1 Probabilities of Leaving Queue 1. The following equation rep-

resents the sum for all the probabilities of leaving queue 1.

rz+ratriatris+rie=1 (5.3)




In order to solve for the 7;;'s, it is necessary to understand that each of these rj;’s represent
the probability of a philosopher selecting his left fork. For example, r; ; represents the

probability that Philosopher 0 leaves queue 1 and picks up Fork 0.

Each of these probabilities are mutually exclusive and depend upon the rate at which
the philosophers complete their eating~thinking cycle. The probability that Philosopher 0
leaves queue 1 is equal to his eating-thinking frequency (fy) divided by the sum of all
the eating-thinking frequencies (A;). Therefore, Philosopher 0 leaves queue 1 with the
probability of:

fo__f fo
M OYAofi fo+th+hatfatfa

T2 = (5.4)

This fraction can be simplified by exploiting the relationship between the cating-

thinking frequencies.

fo=lh=hobhoh

b3 r z3 x4

Thus,
fi=aifo
fa=z2fo
fs=z3fo
fa=zafo

Substituting these values into Eq 5.4 yields the following equation:

r

= bi - b - 1
12= (5+=1fo+=2fg+zsfo+zdo) - fo(1+tx+:2+=3+=4) = 14z $zatbrata
Likewise, the probabilities that Philosophers 1-4 leave queue 1 and pick up their left forks

are:

i

3= Ei-o 1. 14z +z2+z341,

—_— —-— 2
M4 = s = ¥z taa toates

Ziao *
I S S
T8 = Yoo h  IFEnitzmtaata
=0
6= =t = el
E‘_- ofi 1+ +z24+z3+24
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5.3.5.2 Probabilities of Leaving Queue 2. Queue 2 represents the entry
Pick Up Fork 0 and is called by either Philosopher 0 or Philosopher 4. Philosopher 0 leaves
queue 2 and enters queue 3 with frequency fo. Philosopher 4 leaves queue 2 and enters

queue 7 with frequency fy. Therefore,

—TZQT—_L.
T23= T4 © Tan
-_— -_— X
rr = TRy = T

5.3.5.8 Probabilities of Leaving Queues 3-8. The queues 3-6 also
represent picking up a fork and the probabilities are derived similarly to those above.

Therefore,

= 7.1]7_ = Zi
T34 = 747 = Tem

= Tﬁ7— = 2
T4, 1+ T mtE

= Tb7. = —Z3
756 = R+l = matas

- r— 7 -
T62 = T4fi = Tatma

= =1
T8 = B = on

— - I
T49 = 737 = 5i4m

— — Ll
T510 = RIfR = 5t

X,

611 = B3 = Ttm

5.3.5.4 Probabilities of Leaving Queues 7-11. Queues 7-11 represent
putting down forks. The following equations represent the probabilities of leaving these

queues.

T ig = =l

2T B+l T 14
— — I

T8.13 = T3 T T T

_ — T4
LD S Rl vy AR TN

- ~ 1
T8 = 73-[:7; T Hn

=l _ _z2 = _IAT = T
79,14 = h+fz = 1413 To8 = htfa = ni4x

= = —Zi_
0,15 = 7;%5 T ztz

o= = —Z2_
7109 = 751-%!75 = Ttz

= I

= = Zs
11,16 = 75‘-%74- T ratay

5.4 SLAM II Simulation

TIL10 = 37 = mta

Now that the r;; probabilities have been calculated, it is possible to create a queucing
model simulation in SLAM II (Simulation Language for Alternative Modeling) which is
a FORTRAN-based simulation language (20). The SLAM II model has sixteen queues,
where each queue represents one Ada entry point. (See Table 5.2.) One important differ-
ence between SLAM II and general queueing theory is that SLAM II uses times, whereas,

queueing theory uses rates. However, the rate is simply the inverse of the time period.
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The realistic service time for picking up and putting down forks can be approximated
by zero. The time of interest for the forks is not the service time, but rather the wait time
when the fork is in use by another philosopher. Thus, instead of modeling the service times

as zero, the time will be used as part of the delay due to eating.

There are four steps necessary for the eating process:

¢ pick up left fork;
o pick up right fork;
o put down right fork: and

¢ put down left fork.

The eating service time will be divided between the pick up left fork and pick up
right fork queues, such that the sum of the service times equals the total time spent cating,.
This allows a more realistic representation where the philosophers may be required to wait
to pick up their forks. The queues for putting down the forks will have zero service times

because the philosophers do not have to wait in line to put down the forks.

The queue where the philosopher notifies the host that he is leaving the dining room
is used to model the thinking time. Each philosopher has his own thinking quecue so that

it is possible for all the philosophers to think concurrently and at differing rates.

The code and simulation output are contained in Appendix C. The statistics from
the SLAM II simulations are contained within Section 5.6. The next section describes the

Ada program for the Dining Philosophers.

5.5 Ada Implementation

The Ada implementation contains an array of five fork tasks, an array of five philoso-
pher tasks, one host task, and two tasks used to collect statistics while the Ada program is
executing. The collection tasks are used because I/O on a VERDIX system is a subprocess
of the task and will suspend the task, thus, distorting the runtime statistics. The Ada code
and entry trace are located in Appendix C. The statistics gathered from the Ada program

and from the SLAM II simulation are located in the next section.
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5.6 Dining Philosopher Solution

5.6.1 Solve Network Equations. The philosopher eating frequencies are related

by the following equation:

p=l=f b (5.5)

where the x;’s are arbitrary scaling constants. The sum of all the frequencies is equal to

the arrival rate at Queue 1 in the queueing network:

4
=3 /i (5.6)

i=0

The solution presented here assumes that all the philosophers think at different rates. such

that,
Zy = 2
g = 3
X3 = 4
g = 5

Each philosopher eats for approximately 1 hour. Let Philosopher 0 think for 9 hours
and eat for 1 hour; therefore, his eating-thinking cycle takes approximately 10 hours and
repeats with frequency fo = 115. Plugging this value and the above z; values into Eq 5.5

yields the following results. (The hour time unit is actually modeled as seconds.)

o=
h=1%
fa= &
fr=1
fa=1}

and

=foth+h+fst+tfi=3
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The rj; probabilities shown below were calculated using MACSYMA. The batch file is

contained in Appendix C.

2= i
M"3= '135
M4 = %
s = 7‘5

re=rag=rgr=13}

T34=T813= %
T3=Tr2=}
nRr=ru = %
T45 =To14 = %
T49 = Tog8 = %

5,6 = 110,15 = %
rs,10 = T10,9 = %
76,2 = T11,16 = %

4
Te,11 = T11,10= §

T121=T131=T141 =T151=T161 = 1

The sixteen simultaneous equations shown below are solved by substituting in the

r;; values and A;.

A = riz A2 + 1131013 + P14 A4 F M50 005 + 7161 A16
A2 = 71,201 + Te 226

Az = 71,30 + T230

A4
As
Ag = T1,6M01 + 75625
A7 =12,7A2 + T8 728

Ag =T38A3 + TogAe

T1,4M1 + 73,473

71,501 + T4,54

Ag = T49A4 + T10,9 M0
Ao = 75,1025 + T11,10AM11
A1 = re11de + T711A7

M2 = 71207

A13 = 73,138




Al4 = T914M9
A15 = 710,15A10

A6 = 711,16 11

The resulting A values are:

A =1
/\3=,\7=%
/\3‘—"/\3:%
/\4=Ag=%

A=A =35
A2 =
Aiz=1$
Au=F5
Ms=2
Mo = 3

5.6.2 Gather Performance Statistics. The statistics of interest for the Dining
Philosophers are the arrival rate (1), service rate (), queue utilization (p), and service time
(S). Note that the simulated values are often less than the theoretical values because the
equations used to calculate the theoretical values are based upon the assumption that there
is an infinite population when, in fact, there are only five entities circulating throughout

the queueing network. The theoretical A's, u's, p’s, and §’s are shown in Table 5.3.

The utilization factor, p, is the “fraction of time that a server is busy” (16:19), i.e.,
the “ratio of the rate at which ‘work’ enters the system to the maximum rate (capacity)

at which the system can perform this work” (16:18). Symbolically,

A
mp

p=




AR, 0w

Table 5.3. Expected Queueing Statistics

Queue | A m pl S
1]15]2000]0.75 | 0.5
2106 1.000]|0.60% 1.0
3103}1000}0.30]1.0
410510001050 1.0
510.7]1.000]0.70} 1.0
6109|1000 0.90{1.0
7106 — —10.0
803 -1 —10.0
9105 —| —100

101 0.7 _ —10.0
11109 —_ — 1 0.0
1210170111090 9.0
1310.21]0.250 | 0.80 | 4.0
14 { 0.3 04291 0.70 | 2.3
151040667} 0.60] 1.5
16 { 0.5 | 1.000 | 0.50 | 1.0

where m is the number of available servers, A is the queue arrival rate, and z is the queue
service rate. All the queues are single server queues; therefore, m = 1. Queues 7-11, put
down forks, have zero service times and will not be included in this statistical analysis.

Table 5.4 shows the simulated and theoretical utilization factors for the queues.

The service rates for the queues are used to approximate the eating and thinking
times. Each eat cycle has four steps (pick up left fork, pick up right fork, put down right
fork, and put down left fork) and the pick up left and right fork queues are used to model
the eating time. Each pick up fork queue will have a service time equal to the eating time
in order to simulate the wait time for a philosopher if the fork is in use. In the worst case,

a philosopher will have to wait for both forks.

There are five thinking queues in order to allow the five philosophers to think con-
currently. Tables 5.5 and 5.6 contain the average eating and thinking service times for the
SLAM II simulations and the Ada implementation. Table 5.7 contains the eating-thinking

cycle times.

5-22




Table 5.4. Utilization Factors

Expected | SLAM II %
Queue Value | Average | error
1 0.75| 0.2265| 69.8
2 0.60 0.0939 | 844
3 0.30 0.0945 | 68.5
4 0.50 0.0922 | 81.2
5 0.70 0.0916 | 86.9
6 0.90 0.0934 | 89.6
7 0.00 0.0000 0.0
8 0.00 0.0000| 0.0
9 0.00 0.0000 0.0
10 0.00 0.0000 0.0
11 0.00 0.0000 0.0
12 0.90 0.8461 6.0
13 0.80 0.3782 | 52.7
14 0.70 0.2152 ] 693
15 0.60 0.1371{ 771
16 0.50 0.0929 | 814

Table 5.5. Thinking Service Times

Expected | SLAM II % Ada %

Value | Average | error | Average | Error

Phil 0 9.000 9.139 | 1.52 9.486 | 5.12

[ Phil 1 4,000 4.085| 2.10| 4.346| 7.96

Phil 2 2.333 2,325 | 0.36 23911 241

Phil 3 1.500 1481 ] 1.27 1.571 ] 4.52

Phil 4 1.000 1.003 | 0.30 0.933 | 6.70
Table 5.6. Eating Service Times

Expected | SLAM II % Ada %

Value | Average | error | Average | Error

Phil 0 1.000 1.051 5.1 1.080 8.0

Phil 1 1.000 1.043 4.3 1.101 ] 10.1

Phil 2 1.000 1.051 5.1 1.069 6.9

Phil 3 1.000 1.094 9.4 1.044 4.4

Phil 4 1.000 1.099 9.9 1.009 0.9
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Table 5.7. Average Eating-Thinking Cycle

Expected | SLAMII| % Ada %

Value | Average | error | Average | Error

Phil 0 100| 10.190| 1.86| 10.566 | 5.36
| Phil 1 5.0 5128 | 2.50 | 5.447| 8.21
Phil 2 3.3 3375 | 1.24| 3.460| 3.66
[ Phil 3 2.5 2.574 | 2.87| 2.615| 4.40
Phil 4 2.0 2,103 | 4.90| 1.942| 2.90

5.7 Discussion of Results

This section presents an overview of the results gained from applying the Ada Tasking

Model, SLAM II model, and the Ada implementation.

The simulated queue utilization values did not match the expected values because
there were only 5 entities circulating within the network. Finite population queueing
networks are “self-regulating,” meaning that “when the system gets busy, with many of
these customers in the queue, then the rate at which additional customers arrive is in fact
reduced, thus lowering the further congestion of the system” (16:106). Thus, the utilization

was much lower than expected.

The service times are independent of the number circulating within the network;

thus, the values for these statistics are accurate to within 10%.

In addition, the entry trace demonstrated that the addition of the Host to the Din-
ing Philosophers Problem does, in fact, prevent deadlock. Thus, it was shown that the
DARTS design is effective in preventing deadlock without requiring that the actual code

be implemented.

This chapter has shown how to apply the Ada Tasking Model. As already men-
tioned, the simulated results are often less than the theoretical results because the theory
is based upon an infinite population. It is not possible to exactly model an Ada program
in SLAM II; however, the results from the simulation may be used to build confidence in

the theoretical values derived for the queueing network.
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Although this validation does not formally prove that the Ada Tasking Model is
cotrect, it does demonstrate that formally modeling Ada tasking .is feasible. In order for
this model to be useful, it must be automated. The automation will make the application
of the model much easier and allow changes to be made without causing the entire process
to be repeated. A discussion on improving the Ada Tasking Model is presented in the next

chapter.
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VI. Conclusions and Recommendations

6.1 Motivation for Research

As software system requirements become more complex, software engineers must
carefully design their systems to ensure that the systems adequately meet all the re-
quirements, both functional and non-functioral. Because real-time systems have timing
constraints, in addition to the more traditional behavioral constraints, a comprehensive
software design analysis model is required which incorporates performance, timing, and
behavioral constraints. Although the Ada language tasking constructs are compiler inde-
pendent, Ada tasking is dependent on its runtime environment; therefore, a formal model
of Ada tasking is important in order for system designers to make realistic decisions when

modeling Mission Critical Computer Resources (MCCR) systems.

6.2 Conclusions
¢ Feasibility.

The main focus of this research effort was to determine the feasibhility of developing
a parameterized, formal model of Ada tasking. This research showed that such a
parameterized model could be developed by creating a mathematical model which

incorporated real-time scheduling and queueing theory.
¢ Exponential Distribu.ion Assumption.

The model is based upon the assumption that arrival and service times are expo-
nential for entry queues. This assumption allowed Ada entry points to be modeled
as M/M/1 queues. The model needs to be broadened to include general arrival and

service distributions.
¢ Modularity.

The model was built modularly so that changes, such as to the distributions, could
be easily incorporated. Another purpose behind the modularity was to allow the
model to be parameterized sn that the model could be tailored for specific software

applications and runtime environments.
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o Usability.

The Ada Tasking Model needs to be automated in order to be usable. The automa-

tion would also allow changes to be made easily.
¢ Design Analysis Environment.

The model can be used in the future to develop a design analysis environment for
real~time software systems that require Ada as the target language. Thus, given
a specification for such a system, the design analysis environment can be used to

obtain the information needed to support Ada software design decisions.

6.3 Recommendations
¢ General Distributions.

The Ada Tasking Model assumes that arrival and service times are exponential for
entry queues; thus, allowing each Ada entry point to be modeled as an M/M/1
queue. If the Ada tasking facility were modified so that it included timing guarantecs,
then the model would need to consider general arrival and service distributions.
The queues would be modeled as G/M/1 for general arrival distributions, M/G/1
for general service distributions, and G/G/1 for both general arrival and service
distributions. Function A234, Model Arrival Patterns, will need to be redesigned in

th2 event that arrival distributions can be other than exponential.

¢ Automation.
Additionally, the model should unitimately be automated to facilitate its application.
The software engineer should only need to input the task information to the Ada

Tasking Model which would then manipulate the information and produce the entry

trace and performance statistics.
e SADT.

This research used SADT to model the Ada tasking model. The SUN work stations at
AFIT contain a CASE tool called SAtool which automate the application of SADT.




This tool should be used in the future because of its automated data dictionary and

consistency checking.
¢ Further Research.

Model Design Performance is divided into two functions: Define Task Performance
Reguirements (Function A1); and Ada Tasking Model (Function A2). (See Fig-
ure 3.2.) This research effort concentrated on developing the Ada Tasking Model.
Future research should develop Define Task Performance Requirements and its input

control non-functional requirements.
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AFIT
ATM
CPU
CSP
DARTS
DoD
ECS
FCFS
IOP
LRM
MCCR
pdf
PDF
RTE
RR
RSTA
SADT
SJF
UNITY

Appendix A. Glossary of Acronyms

Air Force Institute of Technology

Ada Tasking Model

Central Processor Unit

Communicating Sequential Processes
Design Approach for Real-Time Systems
Department of Defense

Embedded Computer System
First-Come-First-Serve

Input/Output Processor

Language Reference Manual

Mission Critical Computer Resources
Probability Density Function
Probability Distribution Function
Runtime Environment

Round Robin

Real-Time Structured Analysis
Structured Analysis and Design Technique
Shortest-Job-First

Unbounded Nondeterministic Iterative Transformations



Appendix B. Detailed Design

B.1 Environment Model

Figure B.1 represents the environmental model.

Non-Functional

Software

Design

Requirements

Model
Design

Performance

Performance

RTE

Data

B.2 Model Design Performance

Figure B.1. Environment Model

Figure B.2 represents the A0 level of the model. This level is decomposed further to

levels Al, Define Task Performance Requirements, and A2, Ada Tasking Modlel.

B.3 Define Task Performance Requirements

Level A1, labeled Define Task Performance Requirements, will be designed in a later

research effort.
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software

design
y
Define
non-functional Task
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Requirements
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schedulable >
Model
task schedule
Ada -
entry trace 5
Tasking
performance >
A2|  statistics
RTE

Figure B.2. Level A0
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B.4 Ada Tasking Model

Level A2, labeled Ada Tasking Model, models the performance of a given Ada design.
Function A2 (shown in Figure B.3) returns a Boolean flag, labeled schedulable; a task
schedule; an entry trace; and performance statistics, based upon the information included

in task info and RTE.

task info
Determine bounds
num Unschedula- = B
g&ceuog bility
(necessary schedulable
condition) -
A21
:::uon Create
L_Rrocessors o,
Sched_ule task schedule
(sufficient
task info condition)
e
A22
y
Model entry ‘E;‘"
sask info 2| Entry
Calls |———perf siats
A23
scheduler

info

Figure B.3. Level A2

Level A2 is further decomposed to three functions: level A21, Determine Unschedu-
lnbility; level A22, Create Schedule; and level A23, Model Entry Calls. These functions are

described in detail in the following sections.
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B.5 Determine Unschedulability

The steps to determine unschedulability are: Determine Pairwise Task Compatibility;
Find Maximal Compatible Sets of Tasks; and Determine Lower Bound on Number of

Processors. (See Figure B.4.)

task info
Determine
Pairwise
Task
Compatibility incompatibility
matrix
A211
¥
Find
task info | Maximal
Compatible
Sets maximal
compatible
A212} .
fist
Determine
~—LRLDL—3»! Bound on —M>
processots
Number of
task info sl Pr N uhedulagle
A213

Figure B.4. Determine Unschedulability

B.5.1 Determine Pairwise Task Compatibility. Create an NxN incompati-
bility matrix where N is the number of tasks to be scheduled. As previously mentioned,
two tasks are incompatible if they cannot be scheduled together on a single processor. The

incompatibility occurs if the sum of their load factors is greater than 1 or if the sum of their

B-4




execution times is larger than the greatest common divisor of their periods (21:55). The

following pseudoco-e describes the algorithm to create the incompatibility matrix (21:70).

procedure Create_Incompatibility Matrix is
i,j = indices of loop counters

= number of tasks
= array (1..N) of task periods
= array (1..N) of task execution times
= array (1..N, 1..N) of Boolean
-- M is the incompatibility matrix

-- True means incompatible

-- False means not incompatible, i.e. compatible
gcd is a separate function which returns the greatest common

divisor of two integers

< o B B

begin procedure
for i in 1..N loop
for j in 1..N loop
if i=j then
M(i,i) = False ~- every task is compatible
-~ with itself
else
if Ei + Ej <= ged (Ti, Tj) then
-- task i & j are compatible
M(i’j) = False
else
-~ task 1 & j are incompatible
M(i,j) = True
end if
end if
end loop
end loop
end procedure

B.5.2 Find Maximal Compatible Sets of Tasks. The functions, Zeroj, Zerol,
list, push, and pop, used within the algorithm, are defined first before describing the
algorithm itself. The call Zeroj (j, M) takes the matrix M and zeros out all the entries in
the jth column and the jth row (21:77). The call Zerol (j, M) takes the matrix M and
zoros all the rows that have 1's in the jth column and then zeros out the entries in the jth

row and column (21:77). Function list(j) returns the list of tasks represented by a 1 in row
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j The other functions, push and pop, refer to stack operations. Pushing an item places
it on the top of the stack and popping removes an item from the top of the stack. The

algorithm has three stacks: job stack, job complement stack, and array stack.

The following algorithm uses the incompatibility matrix created in the previous step
to produce a list of maximal compatible sets which are sets of tasks which do not exclude
each other from being scheduled on the same processor. Seward’s Algorithm 2.1 (21:81-82)

was found to be too general; the problems with this algorithm are:

1. It assumes that the tree will always have a left and right leaf. This is not true because
most of the left branches branch out further, leaving only a right leaf. The algorithm
always tries to get the maximal compatible list from the left leaf even when it does

not exist,

2. Sometimes a right branch branches down another level, but the algorithm never
considers this possibility. When this occurs, it is necessary to pop an extra array and

job list from their stacks in order to back up to the next node in the tree.

The modified algorithm is shown below.

Step 1. Find the maximum number of ones in any column.
This task will become the root of the tree.

decision: if none of the columns contain any
1’s, then move on to Step 3, skipping Step 2.

Step 2. push job (column number) onto job stack
push list (j) onto job complement stack
push Zeroj (j, M) onto array stack
set incompatibility array R = Zeroj (j, M)
Goto Step 4.

Step 3. R now has only zeroes.

handle the left leaf
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Step 4.

(the tree will only have left leaves on
the first time through the algorithm and if a
right branch branches down a whole level.)
-- get maximal compatible (MC) list and store it

backup to node and go down right side
== pop job stack twice
~= push job complement list onto job stack

handle the right leaf
-- get maximal compatible (MC) list and store it

backup 2 nodes
== pop job stack twice

if the right branch was down a whole
level (having two leaves) then have
to pop an extra job list and array
from the stacks)

~= pop job stack

-= pop array stack

prepare to go down right branch
-- pop job complement stack
-- push job complement onto job stack
-- pop array stack twice

if back at the root then stop.
else R = Zerol (last array popped)

(An extension of step 1.)

Find the maximum number of ones in any column,
decision: if there are zeros in the matrix
and this is not the first time through (depth
first search) then the tree is branching into

an extra level.

goto Step 2.
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B.5.3 Determine Bound on Number of Processors. An estimate of the
lower beund can be found by summing the load factors and taking the ceiling of the sum.

In other words, the minimum number of processors is equal to

N g
(O Y

i=]
This lower bound offers the least number of processors that is possible. An approach which

consistently produces a more realistic lower bound is described below.

Determining the minimal number of processors is part of the Set Covering Problem
(21:207). Finding the minimal covering, however, is not enough because each of the job
sets must be load consistent if they are to be scheduled on a single processor. A load
consistent set is a set of tasks whose load factors sum is less than unity. Therefore, the

minimal covering only gives a lower bound for the minimum number of processors required.

Because a valid schedule must have load consistent sets, every minimal covering must
be found and every irredundant cover that is not minimal must also be found (21:211-212).
Seward defines an irredundant covering as a covering in which the removal of one of the

maximal compatible (MC) sets causes the set to no longer be a cover (21:211-212),

The following is an algorithm for finding the lower bound of processors required.

Step 1: create a cover table where the rows represent the
MC lists and the columns represent the jobs.

Place a 1 in the table to represent that a job is
present in the MC list.

Step 2: if a column contains a single 1, then the corresponding
MC list is an essential MC because the job is only
contained in that MC list. This MC must be contained
in all the solutions,

Remove the MC from the cover table and all the jobs
which are contained in the MC list.

Step 3: Check the table for equivalent rows and remove them,

Step 4: Repeat Steps 2 & 3 until no more essential MC lists
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are found.

Step 5: Find the list of maximal compatible sets for the
jobs which are not contained in the essential MC lists.

Step 6: Append the essential MCs to the new MC lists. The
number of lists gives the lower bound on the required
numbexr of processors.

B.6 Create Schedule

Function A22, Create Schedule, creates a schedule of the tasks based upon the task
scheduler for the RTE. This model does not worry about finding the optimum schedule
because this is often an NP~complete problem (21). For example, the seemingly simple case
of finding the optimum solution for a system with a nonpreemptive scheduling algorithm,

independent tasks, and unequal execution times is an NP-complete problem (21:12).

B.7 Model Entry Calls

Figure B.5 depicts level A23 of the model design. This level has six functions: Get
Entry Precedence Requirements; Create Entry Trace; Create Network of Entry Queues;
Model Arrival Patterns; Solve Network Egquations;, and Gather Performance Stalislics.

The following sections describe each of these functions.

B.7.1 Get Entry Precedence Requirements. The precedence information is
received from the designer who inputs the task information. This information is transferred
to an NxN matrix, where N is the number of entry points. The matrix contains Boolean
values with dependencies denoted by TRUE. The column depends upon the row. If entry j
depends upon entry i, then M(i,j) = TRUE; M(i,i) = FALSE because a task cannot depend

upon itself.

The following pseudocode describes the algorithm to create the precedence matrix.
The function is_precedence(i,j) checks the task information to see whether or not the entry

j depends upon the entry i.
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task schedule
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Figure B.5. Model Entry Calls - Level A23
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procedure Create_Precedence_Matrix is
i,] = indices of loop counters
N = number of entry points
T = array (1..N) of entry precedence constraints
M = array (1..N, 1..N) of Boolean
-~ M is the precedence matrix
-- True means precedence constraint, i.e., dependent
-- False means no constraint, i.e., independent
is_precedence(j,i) is a separate function which returns TRUE
if j is constrained by i.

begin procedure
for i in 1..N loop
for j in 1..N loop
it i=j then
M(i,i) = False -- an entry does not depend
-~ upon itself
else
if is_precedence(T(i), T(i)) then
-~ task j depends upon i
M(i,j) = True
else
-- task i & j are independent
M(i,j) = False
end if
end if
end loop
end loop
end procedure

B.7.2 Create Entry Trace. The entry trace will be created using a CSP-like

language. The entry points are modeled as members of the alphabet. Hoare suggests that

CSP can be represented by a LISP program {13:47). The validation model in this thesis

incorporates the entry calls into an Ad: program.

The entry points are modeled as members of an alphabet. Each task, or possibly

subsystem, can have its own alphabet. If two tasks run concurrently and if an event is in

Loth of the alphabets, then the event must occur simultaneously. If the event is in only

oie of the alphabets, then it may occur independently (13:68-69). The same interaction

is true for “N” concurrent tasks.
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CSP ignores timing details, but, if the entry trace is automated, then the addition
of a time stamp can easily be added. These times will be useful for giving general timing

relationships between different entry calls.

B.7.3 Create Network of Entry Queues. The queues represent the entry
points, i.e., the accept statements. The arrival rate is determined by the calling task(s)
and the queues will be represented by M/M/1 queues. The interconnections between the

entry queues are determined by the precedence matrix developed in Section B.7.1.

This segment of the model may b  2scribed by manually drawing the queueing
network if the number of queues is small. Otherwise, an NxN probability matrix is created,
where the indices of the matrix represent entry queues. This matrix is similar to the
precedence matrix described above except that the entries are values between 0 ¢ 1
which denote the probability of leaving queue i (represented by row i) and er'ering q. ¢

j (represented by column j).

This matrix is referred to as the matrix of transition probabilities (P) for discrete
systems and as the matrix of transition rates (Q) for continuous systems {17:33). This
model will use the Q matrix because it assumes exponential distributions which imply

that the system is continvous.

B.7.4 Model Arrival Patterns. The arrival distributions for the model de-
veloped in this thesis are assumed to be Poisson; thersfore, the irterarrival process is

exponential. (The notation used in this section is consistent with that used by Kleinrock
(16)).
The Poisson distribution is shown in the following equation.

k
Pi(t) = (—'\}:.ie'“ fork>0,t>0 (B.2)

A is the average rate at which customers arrive at the queve. The average time

between arrivals is 1/A. Px(t) is the probability of k ar *als during the time interval (0,t).
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The time between arrivals is exponentially distributed; therefore, the interarrival times are

exponential,

The exponential Probability Distribution Function (PDF) (16:65) for arrivals is de-

noted as:

At)=1-¢€™ fort>0 (B.3)

And the exponential Probability Density Function (pdf) (16:65) is:

a(t) = i%(i)- =Ae™™ fort>0 (B.4)

The arrival rate (A) for each of the queues is placed in a row vector, where the index

refers to the queue number from Section B.7.1.

B.7.5 Solve Network Equations.  Because the queues are assumcd to he
M/M/1, the network can be modeled using the Jackson network equation below (16:149~
150),

N
'\i=7i+z/\j7'j; fori=1,2,..,N (B.5)
i=1

where the rj;’s are the rates described in the Q matrix in Section B.7.3 and the A’s are the

arri- . rates described in Section B.7.4.

There is an equation for each queue. The set of equations may be solved by hand or
simultanc vusly by placing them in a matrix and using a mathematical software program.

Figure B.6 shows one queue out of the system of queues.

External arrivals (y;) are arrivals from outside the network which have the Poisson
distribution. Internal arrivals Agry; arrive from other queues within the network. Feedback
is represented by A;7;;. External departures leave the system entirely and are represented
as Ai(1 = XJ;7i;). Internal departures leave Queue i as A;ri; and are internal arrivals at

Queue j.
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Figure B.6. Queue i in Network

B.7.6 Gather Performance Statistics. The entry trace generates a sequence of
the entry calls. The remainder of the information gained from the entry trace depends upon
the implementation of the trace. This model assumes that the trace will be implemented
as output statements within the program and that the events will be time stamped. Thus,
information gathered from the entry trace, in addition to the list of events, is the number
of times each entry was called, when the calls were made, and general information for the

interarrival and service distributions.

The statistics gathered from the queueing network are averages. The information

may include:

e arrival rate (\)

servic. rate (u)

utilization of queues (p)

time in queue (T')

e number in queue (N,)

service time (S(y))
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o wait time (W(y))

The values of A and p are calculated in the function Solve Network Equations. The

equations for the remaining variables are shown below:
p=Aln
r= e
1-p

AT = -2

N =

S(y)=1-e*"W fory >0

W(y) =1-pe #(1=2W fory >0
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B.8 Data Dictionary

B.8.1 List of Activities

A-0 MODEL DESIGN PERFORMANCE

Al DEFINE TASK PERFORMANCE REQUIREMENTS
A2 Ada TASKING MODEL

A21 DETERMINE PAIRWISE TASK COMPATIBILITY
A22 CREATE SCHEDULE

A23 MODEL ENTRY CALLS

A231 GET ENTRY PRECEDENCE REQUIREMENTS
A232 CREATE ENTRY TRACE

A233 CREATE NETWORK OF ENTRY QUEUES

A234 MODEL ARRIVAL PATTERNS

A235 SOLVE NETWORK EQUATIONS

A236 GATHER PERFORMANCE STATISTICS

|
NAME: Ada TASKING MODEL
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: A2
DESCRIPTION:
The Ada tasking model models the performance of the Ada
design which was developed by a method such as DARTS.
The model returns a task schedule, and event trace, and
performance statistics.
INPUTS: 1none
OUTPUTS: SCHEDULABLE
TASK SCHEDULE
ENTRY TRACE
PERFORMANCE STATISTICS
CONTROLS: TASK INFO
MECHANISMS: RTE
PARENT ACTIVITY: MODEL DESIGN PERFORMANCE
REFERENCE: Appendix B
|
NAME: CREATE ENTRY TRACE
TYPE: ACTIVITY
PROJECT: ATM
NUMBER: 4232
DESCRIPTION:
This function creates an event trace which is a linear
list of the entry calls.
INPUTS: none
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OUTPUTS: ENTRY TRACE

CONTROLS: PRECEDENCES

MECHANISMS: none

PARENT ACTIVITY: MODEL ENTRY CALLS

REFERENCE: Appendix B

(

NAME: CREATE NETWORK OF ENTRY QUEUES

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A233

DESCRIPTION:
The network of entry queues is developed from the entries
which are input from the software design.

INPUTS: TASK INFO

OUTPUTS: NETWORK

CONTROLS: PRECEDENCES

MECHANISMS: none

PARENT ACTIVITY: MODEL ENTRY CALLS

REFERENCE: Appendix B

|

NAME: CREATE SCHEDULE

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: 422

DESCRIPTION:
Create schedule creates a schedule based upon the task
information, task scheduler, and number of processors
available.

INPUTS:

NUM PROCESSORS

TASK INFO

OUTPUTS: TASK SCHEDULE

CONTROLS: SCHEDULABLE

MECHANISMS: SCHEDULER INFO

PARENT ACTIVITY: Ada TASKING MODEL

REFERENCE: Appendix B

!

NAME: DEFINE TASK PERFORMANCE REQUIREMENTS

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A1

DESCRIPTION:
Defining the task performance requirements will be
designed in a follow-on thesis.

INPUTS: NON-FUNCTIONAL REQUIREMENTS
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OUTPUTS: TASK INFO

CONTROLS: SOFTWARE DESIGN

MECHANISMS: none

PARENT ACTIVITY: MODEL DESIGN PERFORMANCE

REFERENCE: Appendix B

|

NAME: DETERMINE BOUND ON NUMBER OF PROCESSORS

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A213

DESCRIPTION:
This function estimates the upper and lower bounds of the
required number of processors for the given set of tasks.

INPUTS:

TASK INFO

NUM PROCESSORS

OUTPUTS:

BOUNDS

SCHEDULABLE

CONTROLS: MAXIMAL COMPATIBLE LIST

MECHANISMS: none

PARENT ACTIVITY: DETERMINE UNSCHEDULABILITY

REFERENCE: Appendix B

|

NAME: DETERMINE PAIRWISE TASK COMPATIBILITY

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A211

DESCRIPTION:
This function compares every pair of tasks to see if they
can co-exist on the same processor. An incompatibility
occurs if the sum of their load factors is greater than
unity or if the sum of their execution times is larger
than the greatest common divisor of their periods.

INPUTS: none

OUTPUTS: INCOMPATIBILITY MATRIX

CONTROLS: TASK INFO

MECHANISMS: none

PARENT ACTIVITY: DETERMINE UNSCHEDULABILITY

REFERENCE: Appendix B

|

NAME: DETERMINE UNSCHEDULABILITY

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A21
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DESCRIPTION:
Determine unschedulability is a necessary condition for
determining if a set of tasks can be scheduled.

INPUTS: NUM PROCESSORS

QUTPUTS:

BOUNDS

SCHEDULABLE

CONTROLS: TASK INFO

MECHANISMS: none

PARENT ACTIVITY: Ada TASKING MODEL

REFERENCE: Appendix B

|

NAME: FIND MAXIMAL COMPATIBLE SETS

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A212

DESCRIPTION:
This function uses the incompatibility matrix to produce
a list of maximal compatible sets which are sets of tasks
which do not exclude each other from being scheduled on
the same processor.

INPUTS: TASK INFO

OUTPUTS: MAXIMAL COMPATIBLE LIST

CONTROLS: INCOMPATIBILITY MATRIX

MECHANISMS: none

PARENT ACTIVITY: DETERMINE UNSCHEDULABILITY

REFERENCE: Appendix B

|

NAME: GATHER PERFORMANCE STATISTICS

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A236

DESCRIPTION:
This function generates statistics based upon the entry
trace and the queueing network of entries.

INPUTS: none

OUTPUTS: PERFORMANCE STATISTICS

CONTROLS:
SOLUTION
ENTRY TRACE

MECHANISMS: none

PARENT ACTIVITY: MODEL ENTRY CALLS

REFERENCE: Appendix B

I

NAME: GET ENTRY PRECEDENCE REQUIREMENTS

B-19



TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A231

DESCRIPTION:
The precedence requirements are input by the designer and
this function converts them into a format acceptable for
the Ada Tasking Model.

INPUTS: TASK INFO

OUTPUTS: PRECEDENCES

CONTROLS: SCHEDULABLE

MECHANISMS: none

PARENT ACTIVITY: MODEL ENTRY CALLS (A23)

REFERENCE: Appendix B

|

NAME: MODEL ARRIVAL PATTERNS

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A234

DESCRIPTION:
This function describes the arrival distributions for
each of the entry queues in the network developed in
A233.

INPUTS:

TASK INFO

TASK SCHEDULE

OUTPUTS: ARRIVALS

CONTROLS: NETWORK

MECHANISMS: none

PARENT ACTIVITY: MODEL ENTRY CALLS (A23)

REFERENCE: Appendix B

|

NAME: MODEL DESIGN PERFORMANCE

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A-0

DESCRIPTION:
Modeling design performance is accomplished after the
initial design has been accomplished by a method such as
DARTS.

INPUTS: NON-FUNCTIONAL REQUIREMENTS

OUTPUTS: PERFORMANCE STATISTICS

CONTROLS: SOFTWARE DESIGN

MECHANISMS: RTE

PARENT ACTIVITY: none

REFERENCE: Appendix B
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NAME: MODEL ENTRY CALLS

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A23

DESCRIPTION:
Model entry calls models the entries in the Ada design
and returns an entry trace and performance statistics.

INPUTS: TASK INFO

OUTPUTS:

ENTRY TRACE

PERFORMANCE STATISTICS

CONTROLS: TASK SCHEDULE

MECHANISMS: none

PARENT ACTIVITY: Ada TASKING MODEL

REFERENCE: Appendix B

!

NAME: SOLVE NETWORK EQUATIONS

TYPE: ACTIVITY

PROJECT: ATM

NUMBER: A235

DESCRIPTION:
This function solves the network of equations based upon
the arrival distributions.

INPUTS: NETWORK

OUTPUTS: SOLUTION

CONTROLS: ARRIVALS

MECHANISMS: none

PARENT ACTIVITY: MODEL ENTRY CALLS

REFERENCE: Appendix B

B.8.2 List of Data Elements

ARRIVALS

BOUNDS

ENTRY TRACE
INCOMPATIBILITY MATRIX
MAXIMAL COMPATIBLE LIST
NETWORK

NON-FUNCTIONAL REQUIREMENTS
NUM PROCESSORS
PERFORMANCE DATA
PERFORMANCE STATISTICS
PRECEDENCES
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RTE
SCHEDULABLE
SCHEDULER INFO
SOFTWARE DESIGN
SOLUTION

TASK INFO

TASK SCHEDULE

!

NAME: ARRIVALS

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
ARRIVALS describes the interarrival distributions for
each of the entry queues in the network developed in
A233. The interarrivals are assumed to follow the
exponential distribution.

DATA TYPE: exponential distribution

SOURCES: A234

DESTINATIONS

INPUT: none

CONTROL: A235

REFERENCE: Appendix B

|

NAME: BOUNDS

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
Bounds is an integer range which represents the upper and
lower bounds for the number of processors.

DATA TYPE: INTEGER

MIN VALUE: 1

SOURCES: A21, A213

DESTINATIONS:

INPUT: none

CONTROL: none

REFERENCE: Appendix B

|

NAME: ENTRY TRACE

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
The entry trace is a linear list of the entry calls.
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DATA TYPE: 1list

PART OF: PERFORMANCE DATA

SOURCES: A2, A23, A232

DESTINATIONS:

INPUT: none

CONTROL: A236

REFERENCE: Appendix B

|

NAME: INCOMPATIBILITY MATRIX

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
The incompatibility matrix is an NxN matrix representing
vhich tasks cannot be scheduled on the same processor.

DATA TYPE: NxN matrix of Boolean

SOURCES: A211

DESTINATIONS:

INPUT: none

CONTROL: A212

REFERENCE: Appendix B

I

NAME: MAXIMAL COMPATIBLE LIST

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
A maximal compatible set is a set of tasks which do not
exclude each other from being scheduled on the same
processor. This element is a list of all such sets.

DATA TYPE: list

SOURCES: A212

DESTINATIONS:

INPUT: none

CONTROL: A213

REFERFNCE: Appendix B

|

NAME: NETWORK

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
Network describes the queueing network developed to
represent each of the entries.

DATA TYPE: NxN matrix

MIN VALUE: O

MAX VALUE: 1

SOURCES: A233
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DESTINATIONS:
INPUT: A2356
CONTROL: A234
REFERENCE: Appendix B
|
NAME: NON-FUNCTIONAL REQUIREMENTS
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:
System constraints expressed in natural language.
DATA TYPE: Natural language
SOURCES: environment
DESTINATIONS:
INPUT: A-0, Al
CONTROL: none
REFERENCE: Appendix B
i
NAME: NUM PROCESSORS
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:
The number of processors that are available in the system
which is being modeled.
DATA TYPE: INTEGER
MIN VALUE: 1
PART OF: RTE
SOURCES: environment
DESTINATIONS:
INPUT: A21, A22, A213
CONTROL: none
REFERENCE: Appendix B
|
NAME: FERFORMANCE DATA
TYPE: DATA ELEMENT
PROJECT: ATM
DESCRIPTION:
Performance criteria is the output of the modsl and
consists of a task schedule, event trace, and performance
statistics.
COMPOSITION:
SCHEDULABLE
TASK SCHEDULE
ENTRY TRACE
PERFORMANCE STATISTICS
SOURCES: A-0
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DESTINATIONS:

INPUT: none

CONTROL: none

REFERENCE: Appendix B

|

NAME: PERFORMANCE STATISTICS

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
The performance statistics are generated from the event
trace and the queueing network. The statistics include
wait time, service time, queue size, queue utilization,
and arrival time.

DATA TYPE: positive, real numbers

PART OF: PERFORMANCE DATA

SOURCES: A2, A23, A236

DESTINATIONS:

INPUT: none

CONTROL: none

REFERENCE: Appendix B

|

NAME: PRECEDENCES

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
Precedences is an NxN matrix which describes if one task
is dependent upon another task in order to execute.

DATA TYPE: NxN matrix of Boolean

SOURCES: A231

DESTINATIONS:

INPUT: none

CONTROL: A233, A232

REFERENCE: Appendix B

!

NAME: RTE

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
The RTE (runtime environment) consists of the computer
hardvare and the oparating system. The data element
contains the number of available processors and the
scheduling information.

COMPOSITION:

NUM PROCESSORS

SCHEDULER INFO
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SOURCES: environment

DESTINATIONS:

INPUT: none

CONTROL: none

MECHANISM: A-0, A2

REFERENCE: Appendix B

|

NAME: SCHEDULABLE

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
A Boolean flag designating whether the given tasks can
be scheduled within the constraints of the task
informatioa and RTE.

DATA TYPE: BOOLEAN

VALUES:

FALSE = <tasks cannot be scheduled

TRUE = tasks may or may not be schedulable, move

onto the next step

PART OF: PERFORMANCE DATA

SOURCES: A2, A21, A213

DESTINATIONS:

INPUT: none

CONTROL: A213

REFERENCE: Appendix B

I

NAME: SCHEDULER INFO

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
The scheduler information describes the type of task
scheduler and entry scheduler. The entry scheduler is
assumed to be a nonpreemptive FCFS scheduler.

PART OF: RTE

SOURCES: none

DESTINATIONS:

INPUT: none

CONTROL: none
MECHANISM: A22

REFERENCE: Appendix B

|

NAME: SOFTWARE DESIGN

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
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The software design is developed prior to invoking the
performance model, possibly using a method such as DARTS.

DATA TYPE: Natural language

SOURCES: environment

DESTINATIONS:

INPUT: none

CONTROL: A-0, Al

REFERENCE: Appendix B

|

NAME: SOLUTION

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
Solution represents the solution to the set of
simultaneous equations from the queueing network.

DATA TYPE: matrix of equations

SOURCES: A235

DESTIVATIONS:

INPUT: none

CONTROL: A236

REFERENCE: Appendix B

I

NAME: TASK INFO

TYPE: DATA ELEMENT

PROJECT: ATM

DESCRIPTION:
The task information is input by the designer and
includes the task name or id, period or frequency,
execution time, precedence requirements, and entry
points.

DATA TYPE: record

COMPOSITION:

TASK_ID

FREQUENCY

EXECUTION_TIME

PRECEDENCES

ENTRY_INFO

SOURCES: A1l

DESTINATIONS:

NPUT: A212, A213, A22, A23, A231, A233, A234

CONTROL: A2, A21, A211

REFERENCE: Appendix B

I

NAME: TASK SCHEDULE

TYPE: DATA ELEMENT
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PROJECT: ATM

DESCRIPTION:
The task schedule is a schedule based upon the given task
information and RTE. The schedule may or may not be
optimal.

PART OF: PERFORMANCE DATA

SOURCES: A2

DESTINATIONS:

INPUT: A234

CONTROL: A23

REFERENCE: Appendix B
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Appendix C. Validation Programs

C.1 Dining Philosophers Solution

C.1.1 MACSYMA Batch File. The rj; probabilities and As were calculated in MAC-
SYMA. The augmented coefficient A matrix derived in MACSYMA is shown below.

1 00000 0O0O0OO0OOOCO0OTO O 1.5]
{01 00 00O0O0O0OO0OO0O0OO0OO0OTO0O O0.61
[0OO0O 1 0O O0OOOOOOOOO0OOO O 0.3]
o001 0O0OOOO0O0O0CO0OOO0OO0O 0.5]
o0 OGCO21 OOOOOOOOOO0O O 071
[OOOOOTI1O0O0OO0OOTO0OO0OO0OO0TO0 O 0.9
L0000 0O0OT11O0UO0O0CO0OUO0O0OO0OTO0OO 061
o o0 00001 0O0O0OTUO0COO OO0 0.3]
[0OOCOOOOUOO 11000 O0O0 OO0 0.51
[0O0O OO O0OO0OCO0OOUOTI1LOOUOOOTO 071
fo o0 0 O0OOOOOTI1O0O0OO0O "0 0.91]
Lo OO O0O0OO0OOOO0OOOTI1IO0UO0O0O0 0.1]
[00O0OOOOCOOOOOT1O0 0 0 0.21
o000 O0OO0OO0COOOOOOT11 0 0 0.3)]
[o0O0O0OOOOOOTOOOO 1 0 0.4]
[0o 00 0 0O0OO0OOOOO0OO0OTO0 It 0.5]

The MACSYMA batch file is shown below.

x:matrix([1],[2],[3],(4],(5]);
£0: 1/10;

£1: x[2] = f0;

£2: x[3] *» t0;

£3: x[4] » £0;

t4: x[5] * f0;

11: 10 + £1 + 12 + £3 + 14;
x_sum: x[1] + x[2] + x(3] + x[4]) + x[5];
ri2i: 1;

ri31: 1;

rigi: 1;

ribl: 1;

riét: 1§;

r12:  x[11/x_sum;

r13:  x[2)/x_sun;

r14: x[3]1/x_sum;

ri6;: x[4]/x_sum;

ri6: x[58]/x_sum;

r23: x[11/(x[1] + x[6]);
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r27:  x(61/(x[1] + z[8]);
r34: x[21/(x[1] + x[21);
r38: x[1]1/(x[1] + x[2]);
r46: x[3]1/(x[2] + x[3]);
r49: x[21/(x[2] + =[3));
xr56: x[4]1/(x(3] + x[4]);
r510: =x[31/(x[3] + x[4]);
r62: x[6]/(x[4] + x[6]);
r611: x[41/(x[4] + x[6]);
r711: x[81/(x[1] + x[56));
x712: x[11/(x[1] + x(6]);
r87:  x[11/(x[1] + x[2]);
r813: x[2]1/(x[1] + x[2]);
r98: x[2)/(x[2] + x(3]);
r914: x[3]/(x[2] + x[3]);
r108: x[31/(x[3] + x[4]);
r1015: x[4)/(x[3] + x[4]);
r1110: x[4]1/(x[4] + x[6]);
r1116: x[51/(x[4] + x[56]);
R:matrix(

(0,0,0,0,0,0,0,0,0,0,0,r121,r131,1141,r161,r161,11],

[r12,~-1,0,0,0, ré2,0,0,0,0,0,0,0,0,0,0,01,
[r13,r23,-1,0.0,0,0,0,0.0,0,0,0,0.0,0,0].
[ri&,o,r34,-1.0,0,0,0,0,0,0,0,0,0,0,0,0],
[r15,0,0,r45,-1,0,0.0,0.0,0,0,0,0,0 .
[r16,0,0,0,r56,-1,0,0,0.0,0,0.0,0,0, ,01,
[0.r27,0.0,0,0,-1,r87.0.0,0.0,0,0,0,0,0],
[0,0,r38.0,0,0,0,-1.r98.0,0,0,0,0.0.0,0].
[0,0,0,:49,0.0.0,0.-1.2109,0,0,0,0,0,0,0],
[0,0,0,0,:510,0,0,0.0,-1,riii0,0,0,0,0,0,0],
[0,0,0,0,0,2611,r711,0,0,0,-1,0,0.0,0,0,0],
[0,0.0,0,0,0,!712,0,0,0,0.'1,0,0,0,0,0].
[0,0,0,0,0,0.0,!813.0,0,0,0,-1,0,0,0,0],
(0,0,0,0 0,0,0,0,r914,0,0,0,0,-1,0,0,0],
fo,0,0,0,0,0,0,0,0,r1015,0,0,0,0,~1,0,0],
[0,0,0.0,0,0,0.0.0,0,!1116,0,0,0,0,-1,0]);
m:echelon(R);
m:subst(m{16]+4/6+m[15) ,m[15] ,m);
:subst(-m[16)+61592/26075+n[14] ,m[14] ,m);
:subst(m{16]1+8014/676+m[13] ,m{13],m);
:subst(m{16]+401/2366+m[12] ,m{12] ,m);
:subst(m[16]+9/5+m[11] ,m[11],m);
:subst(m(16]%77177/20780+m[14]) ,m[14] ,m) ;
:subst(-m[iB]*42751/2160+m[13],m[13],m);
:subst(-m{15]%14/471+m[12] ,m[12] ,m);

:subst (m[15]+7/4+m[10] ,m[10] ,m);
:subst(m(14]+785/108+m[13],m[13] ,m);
:subst(m{141+5/3+m(9] ,w[9] ,m);
m:subst(m{13)+6/167+m[12] ,m[12] ,m);
m:subst(m[13]+3/2+m(8],m[8],m);
m:subst(m{12])*6+m[7],m[7],m);

,0
0
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m:subst(m[11]+9/4+m[6],m[8],n);
m:subst(-m[11]1+28/27+n[E] ,m(6],m);
m:subst(-m[101+16/14+m[4] ,m[4] ,m);
m:subst(m[10]+7/3+n[6],n(5],n);
m:subst(-n[9]+6/5+m[3],n[3],n);
m:subst(m{0)+5/2+n[4] ,nl4] ,m);
m:subst(-n[8]+2/5+n(2] ,m[2] ,n);
m:subst (m{8)*3+m[3] ,u[3] ,m);
m:subst(n[7]+6/5+u[2] ,m[2] ,m);
m:subst(-m[7]1*15/8+m[8] ,u[6] ,n);
m:subst (-n[6]»25/3+n[1] ,m[1],m);
m:subst (m[2]*15+m[1) ,m{1],m);
m:subst (0, [0],m);

m:1.0m;

m:subst(1,1.0,m);
m:subst(1.5,[1.5]1,m);
m:subst(0.1,[0.1],m);
m:subst(0.2,[0.2],m);
m:subst(0.3,[0.3],m);
m:subst(0.4,[0.4],m);
m:subst(0.5,[0.5],m);
m:subst(0.6,[0.6],m);
m:subst(0.7,[0.7],m);
m:subst(0.9,[0.9]1,m);

quit();

C.1.2 Entry Trace. A complete entry trace for a 3 meal cycle is shown below:

( Philosopher 0 enters dining room — Philosopher 1 enters dining room ~— Philosopher 2
enters dining room — Philosopher 0 picks up fork 0 —-— Philosopher 3 enters dining room —
Philosopher 1 picks up fork 1 — Philosopher 2 picks up fork 2 — Philosopher 3 picks up fork 3
— Philosopher 3 picks up fork 4 — Philosopher 3 puts down fork 4 — Philosopher 3 puts down
fork 3 — Philosopher 2 picks up fork 3 — Philosopher 3 leaves dining room — Philosopher
4 enters dining room — Philosopher 4 picks up fork 4 — Philosopher 2 puts down fork 3 —
Philosopher 2 puts down fork 2 — Philosopher 1 picks up fork 2 — Philosopher 2 leaves dining
room — Philosopher 1 puts down fork 2 — Philosopher 1 puts down fork 1 ~— Philosopher 0
picks up fork 1 —— Philosopher 1 leaves dining room — Philosopher 3 enters dining room —
Philosopher 3 picks up fork 3 — Philosopher 0 puts down fork 1 — Philosopher 0 puts down fork
0 — Philosopher 4 picks up fork 0 — Philosopher 0 leaves dining room — Philosopher 2 enters
dining room — Philosopher 2 picks up fork 2 — Philosopher 4 puts down fork 0 ~— Philosopher
4 puts down fork 4 — Philosopher 3 picks up fork 4 —> Philosopher 4 leaves dining room —s
Philosopher 3 puts down fork 4 — Philosopher 3 puts down fork 3 — Philosopher 2 picks up
fork 3 — Philosopher 3 leaves dining room — Philosopher 2 puts down fork 3 — Philosopher 2
puts down fork 2 — Philosopher 2 leaves dining room — Philosopher 1 enters dining room —
Philosopher 1 picks up fork 1 — Philosopher 1 picks up fork 2 — Philosopher 4 enters dining
room — Philosopher 4 picks up fork 4 — Philosopher 4 picks up fork 0 — Philosopher 3 enters
dining room — Philosopher 3 picks up fork 3 — Philosopher 1 puts down fork 2 — Philosopher
1 puts down fork 1 —» Philosopher 1 leaves dining room — Philosopher 4 puts down fork 0 —
Philosopher 4 puts down fork 4 — Philosopher 3 picks up fork 4 — Philosopher 1 leaves dining
room — Philosopher 3 puts down fork 4 — Philosopher 3 puts down fork 3 — Philosopher
3 leaves dining room — Philosopher 4 enters dining room — Philosopher 4 picks up fork 4
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— Philosopher 4 picks up fork 0 — Philosopher 0 enters dining room —— Philosopher 2 enters
dining room — Philosopher 2 picks up fork 2 —+ Philosopher 2 picks up fork 3 — Philosopher
4 puts down fork 0 — Philosopher 0 picks up fork 0 — Philosopher 4 puts down fork 4 —
Philosopher 0 picks up fork 1 — Philosopher 4 leaves dining room — Philosopher 2 puts down
fork 3 — Philosopher 2 puts down fork 2 — Philosopher 2 leaves dining room — Philosopher
0 puts down fork 1 —+ Philosopher 0 puts down fork 0 — Philosopher 0 leaves dining room —
Philosopher 1 enters dining room — Philosopher 1 picks up fork 1 — Philosopher 1 picks up
fork 2 — Philosopher 1 puts down fork 2 — Philosopher 1 puts down fork 1 — Philosopher
1 leaves dining room — Philosopher 0 enters dining room — Philosopher 0 picks up fork 0 —
Philosopher 0 picks up fork 1 —s Philosopher 0 puts down fork 1 — Philosopher 0 puts down
fork 0 — Philosopher 0 leaves dining room )

C.1.8 SLAM II Code.
GEN,K. EDWARDS,Dining Philoloph‘rl,ii/ii/OO,i,,..,,,72;
LINM,17,6,5;
NETWORK;

SLAM II IMPLEMENTATION FOR THE DINING PHILOSOPHERS

ATTRIBUTES:
ATRIB(1) = philosopher’s seat number
ATRIB(2) = number of meals eaten
ATRIB(3) = eating service time
ATRIB(4) = thinking service time
ATRIB(5) = time philosopher enters dining room
ATRIB(6) = time philosopher begins thinking

BIRTH OF 5 PHILOSOPHERS

create 5 entities;

wt Wr We We We We We We We We We We W Ws We

CREATE,0.00001,,,5,1;
ACT/1;

COLCT,ALL,Birth Times;
GOON,1;

; ASSIGN ATTRIBUTES TO ENTITIES

ASSIGN,ATRIB(1)=NNCNT(1)-1,
ATRIB(2)=0,
ATRIB(3)=1.0;

; ENTER DINING ROOM

ENTER QUEUE(1);
ACT,EXPON(0.5);
ASSIGN,ATRIB(5)=TNOVW;
Goow,1;
ACT, ,ATRIB(1).EQ.0,UPFO; phil 0 will pick up fork O
4CT, ,ATRIB(1) .EQ.1,UPF1; phil 1 will pick up fork 1
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ACT, ,ATRIB(1) .EQ.2,UPF2; phil 2 will pick up fork 2
ACT, ,ATRIB(1) .EQ.3,UPF3; phil 3 will pick up fork 3
ACT, ,ATRIB(1) .EQ.4,UPF4; phil 4 will pick up fork 4
ACT, ,ATRIB(1) .GT.5.0R.ATRIB(1).LT.0,ERREND; error handler

PICKING UP FORKS

fork O
PFO  QUEUE(2);
ACT,DRAND*ATRIB(3);
GooN,1;

ACT, ,ATRIB(1) .EQ.0,UPF1; phil 0
ACT, ,ATRIB(1) .EQ.4,DNFO; phil 4

ACT, ,ATRIB(1) .NE.O.AND.ATRIB(1)
; fork 1
?
UPF1  QUEUE(3);

ACT ,DRAND*ATRIB(3);

GOON,1;

ACT, ,ATRIB(1).EQ.1,UPF2; phil 1
ACT, ,ATRIB(1).EQ.0,DNF1i; phil O

ACT, ,ATRIB(1).XE.O.AND.ATRIB(1)
H
; fork 2
UPF2 QUEUE(4);
’ ACT,DRAND*ATRIB(3);
GOON,1;

ACT, ,ATRIB(1).EQ.2,UPF3; phil 2
ACT, ,ATRIB(1).EQ.1,DNF2; phil 1
ACT, ,ATRIB(1).¥E.1.AND.ATRIB(1)

.
H

; fork 3

]

UPF3  QUEUE(S);
ACT ,DRAND#ATRIB(3);
GOOX,1;

ACT, ,ATRIB(1).EQ.3,UPF4; phil 3
ACT, ,ATRIB(1).EQ.2,DNF3; phil 2
ACT, ,ATRIB(1).¥E.2.AND.ATRIB(1)

.
]

; fork 4

H

UPF4& QUEUE(SE);
ACT ,DRAND*ATRIB(3);
GOO¥,1;

ACT, ,ATRIB(1) .EQ.4,UPFO; phil 4
ACT,,ATRIB(1).EQ.3,DNF4; phil 3
ACT, ,ATRIB(1).ME.3.AND.ATRIB(1)

.¥E.4,ERREND;

.NE.1,ERRHND;

.NE.2,ERRHKD;

.ME.3,ERRHND;

.¥E.4,ERRHND;
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PUTTING DOWN FORKS

fork O
NFO  QUEUE(T);
ACT;
Goow,1;

ACT, ,ATRIB(1).EQ.4,DNF4; phil 4

ACT, ,ATRIB(1).¥E.O.AND.ATRIB(1) .NE.4,ERRHND;
ACT, ,ATRIB(1).EQ.0;

COLCT,INT(5),Phil0 Eat Time;

inc meals eaten for phil 0 & assign eating time
ASSIGN,ATRIB(2)=ATRIB(2)+1,

ATRIB(4)»9.0;
ACT,,,TO;
; fork
H
DNF1  QUEUE(8);
ACT;
Goox,1;

ACT, ,ATRIB(1).EQ.0,DNFO; phil 0

ACT, ,ATRIB(1) .NE.O.AND.ATRIB(1) .NE.1,ERRHND;
ACT, ,ATRIB(1).EQ.1;

COLCT,INT(S),Phill Eat Time;

inc meals eaten for phil O & assign eating time
ASSIGN,ATRIB(2)=ATRIB(2)+1,

ATRIB(4)=4.0;
ACT,,,T1;
H
; fTork 2
H
DNF2 QUEUE(9);
ACT;
GOooM,1;

ACT, ,ATRIB(1).EQ.1,DNF1; phil 1
ACT, ,ATRIB(#).¥E.1.AND.ATRIB(1).¥E,2,ERRHND;
ACT, ,ATRIB(.. EQ.2;
COLCT,INT(5),Phil2 Eat Time;
inc meals eaten for phil O & assign eating time
ASSIGN,ATRIB(2)=ATRIB(2)+1,

ATRIB(4)=7/3;

ACT,,,T2;
; fork 3
DNF3 QUEUE(10);
ACT;
GOON,1;

ACT, ,ATRIB(1) .EQ.2,DNF2; phil 2




we

.
L
.
»
I3
?
.
’

TO
THKO

ACT, ,ATRIB(1).ME.2.AND.ATRIB(1).NE.3,ERREND;
ACT, ,ATRIB(1) .EQ.3;

COLCT,INT(5),Phil3 Eat Time;

inc meals eaten for phil O & assign eating time
ASSIGN,ATRIB(2)=ATRIB(2)+1,

ATRIB(4)=3/2;
ACT,,,T3;
H
; fork 4
H
DNF4& QUEUE(11);
ACT;
GOOX,1;

ACT, ,ATRIB(1).EQ.3,DNF3; phil 3
ACT, ,ATRIB(1) .ME.3.AND.ATRIB(1) .ME.4,ERRHND;
ACT, ,ATRIB(1) .EQ.4;
COLCT,INT(S),Phil4 Eat Time;
inc meals eaten for phil O & assign eating time
ASSIGN,ATRIB(2)=ATRIB(2)+1,
ATRIB(4)=1;
ACT,,,T4;

LEAVE DINING ROOM TO THINK

philosopher 0 thinks

ASSIGN,ATRIB(6)=TNOW;
QUEUE(12);
ACT,EXPON(ATRIB(4));
COLCT,INT(8),Phil0 Think Time;
COLCT,INT(5),Phil0 Cycle Time;
ACT,, ,CYCLE;

; philosopher 1 thinks

T
THK1
i

L}
T2
THK2

ASSIGN,ATRIB(8)=TNOW;
QUEUE(13);
ACT,EXPOR(ATRIB(4));
COLCT,INT(8) ,Phill Think Time;
COLCT,INT(B),Phill Cycle Time;
ACT,, ,CYCLE;

philosopher 2 thinks

ASSIGN,ATRIB(6)=TNOW;
QUEUVE(14);

ACT ,EXPOK(ATRIB(4));
COLCT,INT(6),Phil2 Think Time;
COLCT,INT(5),Phil2 Cycle Time;
ACT,, ,CYCLE;
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; philosopher 3 th .nks

13 ASSIGNK,ATRIB(S)=TNOW;

THK3  QUEUE(1S5);
ACT,EXPON(ATRIB(4));
COLCT,INT(6),Phil3 Think Time;
COLCT,INT(5),Phil3 Cycle Time;
ACT,, ,CYCLE;

; philosopher 4 thinks

’

T4 ASSIGN,ATRIB(6)=TNOVW;

THK4 QUEUE(16);
ACT ,EXPON(ATRIB(4));
COLCT,INT(6),Phil4 Think Time;
COLCT,INT(6),Phil4 Cycle Time;
ACT,, ,CYCLE;

; collect avg cycle time statistics

’
CYCLE COLCT,INT(5),Avg Cycle Time;
GQON, t;
ACT, ,ATRIB(2).LT.1000,ENTER; keep eating
ACT, ,ATRIB(2).GE.1000,DIE; max meals eaten, exit system

;
; ERROR HANDLER
ERRHND QUEUE(L7);

COLCT,ALL,Errors;
ACT, , ,ENTER;

; TERMINATE
DIE TERM,5000;

END;
FIN;

C.1.4 Ada Code. Thissection contains the following Ada code for the Dining Philoso-
phers.
o procedure Dining Philosophers
o package Philosopher Info
o procedure Dining
~ task Fork

~ task Host
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— task Philosopher
- task Collect Entries

— task Collect Cycle Stats

C.1.5 procedure Dining Philosophers.

with Philosopher.Info, Dining, Text_IO;
use Philosopher_Info, Text_I0;
procedure Dining_Philosophers is

Teply : character;
Print_Trace : Boolean := False;

Num_Meals,
Maximum_Entries : Integer := 0;

package Int_I0 is new Text_I0.Integer_I0 (Integer);
begin

Text_I0.put._line ("The Dining Philosophers . . .");
Text_IO0.new_line(2);

~-= allows user to input number of meals
Text_IO.put ("Enter number of meals: ");
Int_IO.get (Num_Meals);
Text_I0.new_line;

== allow user to turn off entry trace output
Text_IO.put ("Output the entry trace <y/m>? ");
Text_IO0.get (reply);
Text_I10.new_line;
it reply=’y’ then

Print_Trace := True;
end if;
Maximum_Entries := Num_Phils * Entry_Calls * Num_Meals;
Dining (Maximum_Entries, Num_Meals, Print_Trace);

end Dining_Philosophers;
C.1.6 package Philosopher Info.

package Philosopher_Info is

Num_Phils : constant :z= §;




Entry_Calls : constant :x 8; -- number of entry calls/cycle
subtype Phil_Id is integer range O..Num_Phils-1;

type Phil_Actions is (enter, leave, up_right_fork, up_left_fork,
down_right_fork, down_left_fork);

subtype Event_String is string (1..35);

-= These entries correspond to the entry queues

type Entry_Points is (Enter, Pick_Up_Fork_ 0, Pick_Up_Fork_1,
Pick_Up_Fork_ 2, Pick_Up_Fork. 3,
Pick_Up_Fork_4, Put_Down_Fork 0,
Put_Down_Fork_i, Put_Down_Fork.2,
Put_Down_Fork_3, Put_Down_Fork_4,
Think_0, Think_1, Think_2, Think.3,

Think._4);

type Qing.Stat_Record is record
service : duration := 0.0;
wait : duration := 0.0;
delta_arrival : duration := 0.0;
last_arrival : duration := 0.0;

end record;

-~ This is a global array
Qing_Stats : array (Entry_Points) of Qing_Stat_Record;

function Get_Entry_Index
(14 : Philosopher_Info.Phil_Id;
Action : Philosopher_Info.Phil_Actions)
return Entry_Points;

function Create_Trace_String
(id : Philosopher_Info.Phil _Id;
Action : Philosopher_Info.Phil_Actions)
return Event_String;

end Philosopher_Info;
package body Philosopher_Info is

function Get_Entry_Index
(14 : Philoscpher_Info.Phil_Iq;
Action : Philosopher_Info.Phil_Actions)
vaturn Entry_Points is
Index : Entry_Points;

begin

case Action is
when enter => Index := Enter;
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when up_right_fork =>
case Id is
vwhen O => Index
when 1 => Index
when 2 => Index
when 3 => Index
when 4 => Index
end case;
when up_left_fork =>
case Id is
when 0 => Index
vhen 1 => Index
vhen 2 => Index
vhen 3 => Index
vhen 4 => Index

:2 Pick_Up_Fork_i;
:= Pick_Up_Fork_ 2;
:= Pick_Up_Fork_3;
:= Pick_Up_Fork_4
:= Pick_Up_Fork_ 0

.
’
.
]

:= Pick_Up_Fork_0;
:= Pick_Up_Fork_1;
:= Pick_Up_Fork_2;
:= Pick_Up_Fork_3;
:= Pick_Up_Fork_4;

end case;
when down_right_fork =>
case Id is
when 0 => Index := Put_Down_Fork_i;
when 1 => Index := Put_Down_Fork_2;
when 2 => Index := Put_Down_Fork_3;
when 3 => Index := Put_Down_Fork_4;
when 4 => Index := Put_Down_Fork_0;
end case;
when down_left_fork =>
case Id is
when 0 => Index := Put_Down_Fork_O;
when 1 => Index := Put_Down_Fork_1;
when 2 => Index := Put_Down_Fork_2;
when 3 => Index := Put_Down_Fork_3;
when 4 => Index := Put_Down_Fork_4;
end case;
when leave =>
case Id is
when 0 => Index := Think_0;
when 1 => Index := Think_1;
when 2 => Index := Think_2;
vhen 3 3> Index := Think_3;
when 4 => Index := Think_4;
end case;
end case;
return Index;
end Get_Entry_Index;
function Create_Trace_String
(1d : Philosopher_Info.Phil_Id;

Acticn : Philosopher_Infe.Phil_Actions)
return Event_String is

Event : Event_String := (others => ’ ’);
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begin
Event (1..11) := "Philosopher";
case Action is
when enter =>
Event (12..13) := Phil_Id’image(Id);
Event (14..32) := " enters dining room";
when leave =>
Event (12..13) := Phil_Id’image(Id);
Event (14,.32) := " leaves dining room";
vhen up_right_fork =>
Event (12..13) := Phil_Id’image(Id);
Event (14..27) := " picks up fork";
it Id/=4 then
Event (28..29) := Phil_Id’image(Id+1);
else
Event (28..20) := Integer’image(0);
end if;
when up_left_fork =>
Event (12..13) := Phil_Id’image(Id);
Event (14..27) := " picks up fork";
Event (28..29) := Phil_Id’image(Id);
when down_right_fork =>
Event (12..13) := Phil_Id’image(Id);
Event (14..28) := " puts down fork";
if Id/=4 then
Event (29..30) := Phil_Id’image(Id+1);
else
Event (29..30) := Integer’image(0);
end if;
when down_left_fork =>
Event (12..13) := Phil_Id’image(Id);
Event (14..28) := " puts down fork";
Event (29..30) := Phil_Id’image(Id);
end case;
return Event;
end Create_Trace_String;

end Philosopher_Info;
C.1.7 procedure Dining.

with Philosopher_Info, Calendar;

procedure Dining (Num_Entries : in Integer;
Num_Meals ¢ in Integer;
Print_Trace : in Boolean) is

Trace : array (1..Num_Entries) of Philosopher_Info.Event_String;
task type Philosopher is

entry Birth (I : in Philosopher_Info.Phil_Id;
t_think : in Float);
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end Philosopher;

task type Fork is
entry Pick.Up (t_accept
entry Put_Down(t_accept
end Fork;

task Host is
entry Enter (t_accept
entry Leave (t_accept
end Host;

task Collect_Entries is
entry Next_Entry (Id
. Action
entry Output_Trace;
end Collect_Entries;

in
in

task Collect_Cycle_Stats is
entry Start_of_Day (Id
Time
entry Pass_Timing (Id
t_think,
t_eat,
t_wait
entry End_of_Day (Id :
Time :
end Collect_Cycle_Stats;

ee oo s

out Duration);
out Duration);

out Duration);
out Duration);

Philosopher_Info.Phil _Id;
Philosopher_Info.Phil_Actions);

Philosopher_Info.Phil_Id;
Duration);
Philosopher_Info.Phil_Id;

duration);
Philosopher_Info.Phil_Id;
Duration);

Forks : array (Philosopher_Info.Phil_Id) of Fork;
Philosophers : array (Philosopher_Info,Phil_Id) of Philosopher;

task body Philosopher is separate;

task body Fork is separate;
task body Host is separate;

task body Collect_Entries is separate;

task body Collsct_Cycle_Stats is
begin
Philosophers(0).Bizth(0,9.0);
Philosophers(1).Birth(1,4.0);
Philosophers(2) .Birth(2,2.333);

Philosophers(3).Birth(3,1.5);
Philosophers(4).Birth(4,1.0);

end Dining;
C.1.8 task Fork.

separate(Dining)

separate;
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task body Fork is

== A fork can be picked up or put down. The Fork task

accepts calls to Pick_Up and Put_Down sequentially.

t_accept is returned to the calling task and is used
to determine the service and wait times for the

-- entry queues.

begin
loop
select
accept Pick_Up (t_accept : out Duration) do
t_accept := Calendar.Seconds(Calendar.Clock);
end Pick_Up;
accept Put_Down(t_accept : out Duration) do
t.accept := Calendar,Seconds(Calendar.Clock);
end Put_Down;
or
terminate;
end select:
end loop;
end. Fork;

C.1.9 task Host.

separate(Dining)
task body Host is

~- The host stands at the door of the dining room and
-~ allows the philosophers to enter or leave.

~= Only tour philosophers are allowed in the dining
-- room at a time in order to prevent deadlock.

== t_accept is returned to the calling task and is used
-~ to determine the servicy and wait times for the

-- entry queues.

Num_in_Room : integer := 0;
Id : Philosopher_Info.Phil _Id;

begin
loop
select
when Num_in_Room < 4 =>
accept Enter (t_accept : out Duration) do
t._accept := Calendar.Seconds(Calendar.Clock);

end Enter;
Num_in_Room := Num_in_Room + 1;

or
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vhen Num_in_Room > 0 =>
accept Leave (t_accept : out Duration) do
t_accept := Calendar,Seconds(Calendar.Clock);
end Leave;
Num_in_Room := Num_in_Room = 1;
or
terninate;
end select;
end loop;
end Host;

C.1,10 task Philosopher.

with Text_I0, Calendar, Random_Number;
use Text_I0, Random_Number;
separate(Dining)

task body Philosopher is

~- Package Random_Number contains the function Next
=~ that returns a random float. The random number
~- generator is used for the eating and thinking delays.

package £1t_io is new text_io.float_io(float);

Eating_Time : float := 0.9;
Thinking. Time : float;

Double : float := 2,0;

Left_Fork,

Right_Fork,

Temp,

Id Philosopher_Info.Phil_Id;

Meals_Eaten
Entry_Index,
Entry_Index_R : Philosopher_Info.Entry_Points;

Integer := 0;

Beg_Think,

Beg. Eat,

Beg_of_Cycle,

End_of_Cycle : Duration := 0.0;

g.arrival,

g.arrival R,

q.accept,

q.accept_R,

q.complete,

q.complete R : duration := 0.0;

use Philosopher_Info;
package Dur_I0 is new Fixed IO (Duration); use Dur_IO;
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begin

-

accept Birth (I

got seat assignment and thinking time
in Philosopher_Info.Phil_Id;
in Float) do

t_think
Id := I;
Thinking Time := t_think;

end Birth;
Collect_Cycle_Stats.Start_of _Day (Id, Calendar.Seconds(Calendar.Clock));

got fork assignments

Left_Fork := Iq;
Tenp 1z (integer(Left_Fork) + 1) mod §;
Right_Fork := Philosopher_Info.Phil_Id(Temp);

while Meals_Eaten < Num_Neals loop

Beg_of_Cycle := Calendar.Seconds(Calendar.Clock);

enter dining room/collect ging stats/add entry to trace
q.arrival := Calendar.Seconds(Calendar.Clock);
Host.Enter(q_accept);
q.complete := Calendar.Seconds(Calendar,Clock);
Entry_Index := Get_Entry_Index(Id,enter);
Qing_Stats(Entry.Index).service :=
Qing_Stats(Entry_Index).service + (q_complete ~ q_accept);
Qing_Stats(Entry.Index).wait :=
Qing_Stats(Entry_Index).wait + (q.accept - q.arrival);
it Qing_Stats(Entry_Index).last_arrival /= 0.0 then
Qing_Stats(Entry_Index).delta_arrival :=
q-arrival - Qing_Stats(Entry_Index).last_arrival;
end if;
Qing_Stats(Entry._Index).last_arrival := q_arrival;

Collect_Entries.Next_Entry (Id, enter);

pick up left fork and collect qing stats and entry trace
q.arrival := Calendar.Seconds(Calendar.Clock);
Forks(Left_Fork).Pick_Up(q.accept);
Entry_Index :s Get_Entry_Index(Id,up.left_fork);
if Qing_Stats(Entry_Index).last_arrival /= 0.0 then

Qing_Stuts(Entry_Index).delta_arrival :=

q.arrival - Qing_Stats(Entry_Index).last_arrival;

end if;
Qing_Stats(Entry_Index).last_arrival :x q_arrival;

Collect _Entries.Next_Entry (Id, up_left_fork);
pick up right fork )
q.arrival_R := Calendar.Seconds(Calendar.Clock);

Forks(Right_Fork).Pick_Up(q_accept_R);
q.complete_R :: Calendar.Seconds(Calendar.Clock);
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Entry.Index_R := Get_Entry_ Index(Id,up_right_fork);
if Qing_Stats(Entry_Index_R).last_arrival /= 0.0 then
Qing_Stats(Entry.Index_R).delta_ arrival :=
q.arrival R - Qing_Stats(Entry_Index_R).last_arrival;
end if;
Qing_Stats(Bntry_Index_R).last arrival := q_arrival_R;

Collect_Entries.Next_Entry (Id, up.right_fork);

-- eat
Beg.Eat := Calendar.Seconds(Calendar.Clock);
delay duration(Bating Time * Next);
q.complete :» Calendar.Seconds(Calendar.Clock);
Qing_Stats(Entry.Index).service :=
Qing_Stats(Entry.Index).sexrvice + (q_complete - q_accept);
Qing_Stats(Entry_Index).wait :=
Qing_Stats(Entry_Index).wait + (q_accept - q_arrival);

delay duration(Eating_Time * Next);
q.complete_R := Calendar.Seconds(Calendar.Clock);
Qing_Stats(Entry_Index_R).service :s=
Qing_Stats(Entry_Index_R).service + (q_complete_R - q_accept_R);
Qing_Stats(Entry_Index_R).wait :=
Qing_Stats(Entry_Index_R).wait + (q_accept_R - q_arrival R);

----- put down right fork
q.arrival := Calend:ir.Seconds{Calendar.Clock);
Forks(Right_Fork).Put_Down(q_accept);
q.complete := Calendar.Seconds(Calendar.Clock);
Entry.Index := Get_Entry_Index(Id,down_right_tfork);
Jirg_Stats(Entry.Index).service :=
Qing_Stats{Entry_Index).service + (q.complete - g_accept);
Qing.Stats(Entry_Index).wait :=
Qing_Stats(Entry_Index).wait + (q_accept - g_arrival);
if Qing_Stats(Entry_Index).last_arrival /= 0.0 then
Qing_Stats(Entry_Index).delta_arrival :=
q.arrival - Qing_Stats(Entry_Index).last_arrival;
and if;
Qing_Stats(Entry_Index).last_arrival := q_arrival;

Collect_Entries.Next_Entry (Id, down_right_fork);

----- put down left fork
q.arrival := Caiendar.Seconds(Calendar.Clock);
Forks(Left_Fork).Put_Down(q_accept);
q_complete := Calendar.Seconds(Calendar.Clock);
Entry_Index := Get Entry_Index(Id,down_left_fork);
Qing_Stats(Entry_Index).service :=
Qing_Stats(Entry.Index).service + (q_complete - g_accept);
Qing_Stats(Entry_Index).wait :=
Qing_Stats(Entry_Index).vait + (q_accept - g_arrival);
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it Qing_Stats(Entry_Index).last_arrival /= 0.0 then
Qing_Stats(Entry_Index).delta_arrival :=
q.arrival - Qing_Stats(Entry_Index).last_arrival;
end if;
Qing.Stats(Entry_Index).last_arrival := q_arrival;

Collect_Entries.Next_Batry (Id, down_left_fork);
Meals_Eaten := Meals_Baten + 1;

leave dining room
q.arrival := Calendar.Seconds(Calendar.Clock);
Host.Leave(q. accept);
Entry_Index := Get_Entry_Index(Id,leave);
it Qing_Stats(Entry_Index).last_arrival /= 0.0 then
Qing_Stats(Entry_Index).delta_arrival :=
q.arrival - Qing_Stats(Entry_Index).last_arrival;
end if;
Qing.Stats(Entry_Index).last_arrival := q_arrival;

Collect. Entries.Next Entry (Id, leave);

Beg_Think := Calendar.Seconds(Calendar.Clock);
delay duration(Double * Thinking _Time * Next);
g.complete := Calendar.Seconds(Calendar.Clock);

Qing_Stats(Entry_Index).service :=
Qing_Stats(Entry_Index).service + (q.complete - q_accept);
Qing_Stats(Entry_Index).wait :=
Qing_Stats(Entry_Index).wait + (q_accept - q_arrival);

End_of_Cycle := Calendar.Seconds(Calendar.Clock);

Collect_Cycle_Stats.Pass_Timing
(1d,
End_of_Cycle - Beg. Think,
Beg.Think - Bug_Eat,
Beg_Eat - Beg_of_Cycle);

end loop;

Collect_Cycle_Stats.End_of_Day (Id, Calendar.Seconds(Calendar.Clock));

end Philosopher;

C.1.11 task Collect Entries.

with Text_I0; use Text_IO;
separate(Dining)
task body Collect_Entries is
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The_1d ¢ Philosopher_Info.Phil_Iq;
The_Action : Philosopher_Info.Phil_Actions;

begin
for 4 in 1..Num_Entries loop
accept Next_Batry
(Ia ¢ in Philosopher_Info.Phil_Id;
Action : in Philosopher_Info.Phil_Actions) do
The_Id 1= Id;
The_Action := Action;
end Next_Entry;
Trace(i) := Philosopher_Info.Create_Trace _String
(The_Id, The_Action);
end loop;

accept Output_Trace;
it Print_Trace then
for 4 in 1. .¥um_Entries loop
Text_10.put_line (Trace(i));
end loop;
end if;

end Collect _Entries;
C.1.12 task Collect Cycle Stats.

with Text_IO; use Text_IO;
separate(Dining)
task body Collect_Cycle_Stats is

use Philosopher_Into;

package Int_I0 is new Integer_IO(Integer);

package Flt_I0 is new Float_IO(Float);

package Clock_I0 is new Fixed_I0(Duration);

package Entry_I0 is new Enumeration_IO(Entry_Points);
use Int_I0, F1t_I0, Clock_IO, Entry_IO;

Total_Loops : Integer := (Num_Meals + 2)*Num_Phils;
-~ record start and stop times in an array

type Times is array (Phil_Id) of Duration;

Start_Times,

End_Times : Times;

-- record timing information for each cycle
type Timing_Record is record

think : duration;

wvait : durationm;

eat : duration;
end record;

type Timing_Array is array (Phil.Id,1..Num_Meals) of Timing_Record;
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Cycle_Times : Timing_Axrray;
Total ¢ Timing_Record;

== keep track of number of times philosophers eat
type Meals is array (Phil_Id) of Integer;
Meals_Eaten : Meals := (others => 0);

Pid ¢+ Phil_Id;
Cycle_Total,
Cycle_Subtotal,
Think,

Wait,

Eat : Duration;

lanbda,

m,

rho,

T, X, : float := 0,0;

begin
put_line("total loops = " & integer’image(total_loops));
== collect raw data
for i in 1..Total_Loops loop
put_line ("loop number " & integer’image(i));
select
accept Start_of_Day (Id : Philosopher_Into.Phil_Id;
Time : Duration) do
Stari_Times(Id) := Time;
end Start_of_Day;
or
accept Pass_Timing (Id ¢ Philosopher_Info.Phil_Id;
t_think,
t_eat,
t_wait : duration) do
Pid  := Id;
Think := t_think;
Eat = t_eat;
Wait := ¢t _wait;
end Pass_Timing;

Meals_Eaten(Pid) := Meals_Eaten(Pid) + 1;
Cycle_Times(Pid,Meals_Eaten(Pid)) :=
(Think, Wait, Eat);
or
accept End_of _Day (Id : Philosopher_Info.Phil_Id;
Time : Duration) do
End_Times(Id) := Time;
end End_of _Day;

end select;
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end loop;

== generate cycle statistics
tor 1 in Phil_Id loop

Think := 0,0;

Wait := 0.0;

Bat := 0.0;

put_line ("Philosopher" & Phil_Id’image(i) & " Average Cycle Times");
for j in 1..Num_Meals loop

~= sum the cycle times

Think := Think + Cycle_Times(i,j).think;

Wait := Wait + Cycle_Times(i,j).wait;

Eat :x Eat + Cycle_Times(i,j).eat;
end loop; =-- j index

Total.think := Total.think + Think;
Total.wait := Total.wait + Wait;
Total.eat := Total.eat + Eat;
Cycle_Subtotal := Think + Wait + Eat;
Cycle_Total := Cycle_Total + Cycle_Subtotal;

== output average cycle statistics

put ("Thinking Time =z "),

put (duration(Think/Num_Meals), fore=>8);
new_line;

put ("Waiting Time = ");
put (duration(Wait /Num_Meals), fore=>8);

new_line;

put ("Eating Time = ");

put (duration(Eat /Num_Meals), fore=>8);
new_line;

put ("Delta Cycle Time = ");
put(End_Times(i) - Start_Times(i), fore=>8);

new_line;

put ("Actual Time = ");
put (Cycle_Subtotal, fore=>8);
new_line;

put ("Overhead = "),

put (End _Times(i) -~ Start_Times(i) - Cycle_Subtotal, fore=>8);
new_line(2);
end loop; =~- index i

put_line ("Averages for all the Cycles");

put ("Thinking Time = ");

put (duration(Total.think/(Num_Phils * Num_Meals)));
nevw_line;
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put ("Waiting Time = ");

put (duration(Total.wait/(Num_Phils * Num_Meals)));
new_line;

put ("Eating Time = ");

put (duration(Total.eat/(Num Phils * Num_Neals)));
new_line;

-~ output qing stats

nev_line(2);

put_line (" Queueing Timing Statistics "); new_line;
put_line (" Delta");

put_line ("Entry Point Arrival Time Service Time Wait Time");
put_line (M--=eeeceea - ");

for i in Entry_Points loop
put (i, width=>18);
put (duration(Qing_Stats(i).delta_arrival/(Num_Meals-1)), fore=>5);
put (duration(Qing _Stats(i).service/Num_Meals), fore=>10);
put (duration(Qing _Stats(i).wait/Num_Meals), fore=>10);
new_line;
end loop;

¥ := float(Xum_Meals);

for i in Entry_Points loop
X := float(Qing_Stats(i).delta arrival);
lambda := (¥-1.0)/X;
X := float(Qing_Stats(i).service);
mu := M/X;
rho := lambda / mu;

Ul := (rho/mu)/(1.0-rho);

T := (1.0/mu)/(1.0-rho);

new_line;

entry I0.put (i, width=>18); new_line;

put (" lanbda = "); £1t_T0.put(i mbda, exp=>0,aft=>4); new_line;

put (* m = "); £1t_I0.put(un, exp=>0,aft=>4); new_line;

put (" Tho = "); £1t_10.put(rho, exp=>0,aft=>4); new_line;

put (" L] = ");  £1t_I0.put(VW, exp=>0,att=>4); new_line;

put (" T = "); £1¢_I0.put(T, oxp=>0,aft=>4); new_line;
end loop;

Collect_Entries.Output_Trace;

end Collect_Cycle_Stats;
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